Zephyrnet Logo

Continuous-wave near-infrared stimulated-emission depletion microscopy using downshifting lanthanide nanoparticles

Date:

  • 1.

    Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    CAS  Article  Google Scholar 

  • 2.

    Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    CAS  Article  Google Scholar 

  • 3.

    Vicidomini, G. et al. Sharper low-power STED nanoscopy by time gating. Nat. Methods 8, 571–573 (2011).

    CAS  Article  Google Scholar 

  • 4.

    Klar, T. A., Jakobs, S., Dyba, M., Egner, A. & Hell, S. W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl Acad. Sci. USA 97, 8206–8210 (2000).

    CAS  Article  Google Scholar 

  • 5.

    Willig, K. I., Harke, B., Medda, R. & Hell, S. W. STED microscopy with continuous wave beams. Nat. Methods 4, 915–918 (2007).

    CAS  Article  Google Scholar 

  • 6.

    Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346, 1257998 (2014).

    Article  Google Scholar 

  • 7.

    Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317, 1749–1753 (2007).

    CAS  Article  Google Scholar 

  • 8.

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  Article  Google Scholar 

  • 9.

    Fölling, J. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return. Nat. Methods 5, 943–945 (2008).

    Article  Google Scholar 

  • 10.

    Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    CAS  Article  Google Scholar 

  • 11.

    Klar, T. A. & Hell, S. W. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett. 24, 954–956 (1999).

    CAS  Article  Google Scholar 

  • 12.

    Eggeling, C. et al. Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457, 1159–1162 (2008).

    Article  Google Scholar 

  • 13.

    Vicidomini, G., Bianchini, P. & Diaspro, A. STED super-resolved microscopy. Nat. Methods 15, 173–182 (2018).

    CAS  Article  Google Scholar 

  • 14.

    Hoebe, R. et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat. Biotechnol. 25, 249–253 (2007).

    CAS  Article  Google Scholar 

  • 15.

    An, Z. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 14, 685–690 (2015).

    CAS  Article  Google Scholar 

  • 16.

    Bünzli, J.-C. G., Chauvin, A.-S., Kim, H. K., Deiters, E. & Eliseeva, S. V. Lanthanide luminescence efficiency in eight-and nine-coordinate complexes: role of the radiative lifetime. Coord. Chem. Rev. 254, 2623–2633 (2010).

    Article  Google Scholar 

  • 17.

    Malta, O. Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. J. Non Cryst. Solids 354, 4770–4776 (2008).

    CAS  Article  Google Scholar 

  • 18.

    O’Brien, J. J. & O’Brien, J. F. The Laporte selection rule in electronic absorption spectroscopy. J. Coll. Sci. Teach. 29, 138–140 (1999).

    Google Scholar 

  • 19.

    Wisser, M. D. et al. Strain-induced modification of optical selection rules in lanthanide-based upconverting nanoparticles. Nano Lett. 15, 1891–1897 (2015).

    CAS  Article  Google Scholar 

  • 20.

    Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photonics 6, 423–431 (2012).

    CAS  Article  Google Scholar 

  • 21.

    Fernandez-Bravo, A. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol. 13, 572–577 (2018).

    CAS  Article  Google Scholar 

  • 22.

    Chen, X. et al. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing. Nat. Commun. 7, 10304 (2016).

    CAS  Article  Google Scholar 

  • 23.

    Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).

    CAS  Article  Google Scholar 

  • 24.

    Lando, M., Kagan, J., Linyekin, B. & Dobrusin, V. A solar-pumped Nd:YAG laser in the high collection efficiency regime. Opt. Commun. 222, 371–381 (2003).

    CAS  Article  Google Scholar 

  • 25.

    Wang, F., Deng, R. & Liu, X. Preparation of core–shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc. 9, 1634–1644 (2014).

    CAS  Article  Google Scholar 

  • 26.

    Liu, Y. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 543, 229–233 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photonics 3, 144–147 (2009).

    CAS  Article  Google Scholar 

  • 28.

    Han, K. Y., Kim, S. K., Eggeling, C. & Hell, S. W. Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Lett. 10, 3199–3203 (2010).

    CAS  Article  Google Scholar 

  • 29.

    Hanne, J. et al. STED nanoscopy with fluorescent quantum dots. Nat. Commun. 6, 7127 (2015).

    CAS  Article  Google Scholar 

  • 30.

    Gao, P., Prunsche, B., Zhou, L., Nienhaus, K. & Nienhaus, G. U. Background suppression in fluorescence nanoscopy with stimulated emission double depletion. Nat. Photonics 11, 163–169 (2017).

    CAS  Article  Google Scholar 

  • 31.

    Koechner, W. Solid-State Laser Engineering 38–101 (Springer, 2006).

  • 32.

    White, J. O. Parameters for quantitative comparison of two-, three-, and four-level laser media, operating wavelengths, and temperatures. IEEE J. Quantum Electron. 45, 1213–1220 (2009).

    CAS  Article  Google Scholar 

  • 33.

    Rehor, I. & Cigler, P. Precise estimation of HPHT nanodiamond size distribution based on transmission electron microscopy image analysis. Diam. Relat. Mater. 46, 21–24 (2014).

    CAS  Article  Google Scholar 

  • 34.

    Han, K. Y. et al. Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett. 9, 3323–3329 (2009).

    CAS  Article  Google Scholar 

  • 35.

    Gu, Y. et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photonics 13, 525–531 (2019).

    CAS  Article  Google Scholar 

  • 36.

    Chen, C. et al. Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat. Commun. 9, 3290 (2018).

    Article  Google Scholar 

  • 37.

    Jin, D. et al. Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat. Methods 15, 415–423 (2018).

    CAS  Article  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00927-y

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?