Zephyrnet Logo

Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics

Date:

  • 1.

    Elinav, E. & Peer, D. Harnessing nanomedicine for mucosal theranostics—a silver bullet at last? ACS Nano 7, 2883–2890 (2013).

    CAS  Article  Google Scholar 

  • 2.

    Hanauer, S. B. et al. Incidence and importance of antibody responses to infliximab after maintenance or episodic treatment in Crohn’s disease. Clin. Gastroenterol. Hepatol. 2, 542–553 (2004).

    CAS  Article  Google Scholar 

  • 3.

    Baert, F. et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 348, 601–608 (2003).

    CAS  Article  Google Scholar 

  • 4.

    Kedmi, R. et al. A modular platform for targeted RNAi therapeutics. Nat. Nanotechnol. 13, 214–219 (2018).

    CAS  Article  Google Scholar 

  • 5.

    Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article  Google Scholar 

  • 6.

    Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    CAS  Article  Google Scholar 

  • 7.

    Fenske, D. B., Chonn, A. & Cullis, P. R. Liposomal nanomedicines: an emerging field. Toxicol. Pathol. 36, 21–29 (2008).

    CAS  Article  Google Scholar 

  • 8.

    Ledford, H. Gene silencing technology gets first drug approval after 20-year wait. Nature 560, 291–292 (2018).

    CAS  Article  Google Scholar 

  • 9.

    Ramishetti, S. et al. Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 9, 6706–6716 (2015).

    CAS  Article  Google Scholar 

  • 10.

    Peer, D., Park, E. J., Morishita, Y., Carman, C. V. & Shimaoka, M. Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319, 627–630 (2008).

    CAS  Article  Google Scholar 

  • 11.

    Meenan, J. et al. Altered expression of α4β7, a gut homing integrin, by circulating and mucosal T cells in colonic mucosal inflammation. Gut 40, 241–246 (1997).

    CAS  Article  Google Scholar 

  • 12.

    Yu, Y. et al. Structural specializations of α4β7, an integrin that mediates rolling adhesion. J. Cell Biol. 196, 131–146 (2012).

    CAS  Article  Google Scholar 

  • 13.

    Sun, H. et al. Distinct chemokine signaling regulates integrin ligand specificity to dictate tissue-specific lymphocyte homing. Dev. Cell 30, 61–70 (2014).

    CAS  Article  Google Scholar 

  • 14.

    Lichtenstein, G. R., Hanauer, S. B. & Sandborn, W. J. Risk of biologic therapy-associated progressive multifocal leukoencephalopathy: use of the JC virus antibody assay in the treatment of moderate-to-severe Crohn’s disease. Gastroenterol. Hepatol. 8, 1–20 (2012).

  • 15.

    Green, N. et al. Mutational analysis of MAdCAM-1/α4β7 interactions reveals significant binding determinants in both the first and second immunuglobulin domains. Cell Adhes. Commun. 7, 167–181 (1999).

    CAS  Article  Google Scholar 

  • 16.

    Shyjan, A. M., Bertagnolli, M., Kenney, C. J. & Briskin, M. J. Human mucosal addressin cell adhesion molecule-1 (MAdCAM-1) demonstrates structural and functional similarities to the α4β7-integrin binding domains of murine MAdCAM-1, but extreme divergence of mucin-like sequences. J. Immunol. 156, 2851–2857 (1996).

    CAS  Google Scholar 

  • 17.

    Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    CAS  Article  Google Scholar 

  • 18.

    Dearling, J. L. J. et al. Detection of intestinal inflammation by MicroPET imaging using a 64Cu-labeled anti-β7 integrin antibody. Inflamm. Bowel Dis. 16, 1458–1466 (2010).

    Article  Google Scholar 

  • 19.

    Dearling, J. L. J., Daka, A., Veiga, N., Peer, D. & Packard, A. B. Colitis immunoPET: defining target cell populations and optimizing pharmacokinetics. Inflamm. Bowel Dis. 22, 529–538 (2016).

    Article  Google Scholar 

  • 20.

    Belliveau, N. M. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).

    Article  Google Scholar 

  • 21.

    Cohen, Z. R. et al. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano 9, 1581–1591 (2015).

    CAS  Article  Google Scholar 

  • 22.

    Veiga, N. et al. Leukocyte-specific siRNA delivery revealing IRF8 as a potential anti-inflammatory target. J. Control Release 313, 33–41 (2019).

    CAS  Article  Google Scholar 

  • 23.

    Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).

    Article  Google Scholar 

  • 24.

    Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 104, 15.25.1–15.25.14 (2014).

  • 25.

    Dieleman, L. A. et al. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 107, 1643–1652 (1994).

    CAS  Article  Google Scholar 

  • 26.

    Berg, D. J. et al. Rapid development of colitis in NSAID-treated IL-10 deficient mice. Gastroenterology 123, 1527–1542 (2002).

    CAS  Article  Google Scholar 

  • 27.

    Holgersen, K., Kvist, P. H., Markholst, H., Kornerup Hansen, A. & Holm, T. L. Characterisation of enterocolitis in the piroxicam-accelerated interleukin-10 knock out mouse—a model mimicking inflammatory bowel disease J. Crohns Colitis 8, 147–160 (2012).

  • 28.

    Holgersen, K., Kvist, P. H., Hansen, A. K. & Holm, T. L. Predictive validity and immune cell involvement in the pathogenesis of piroxicam-accelerated colitis in interleukin-10 knockout mice. Int. Immunopharmacol. 21, 137–147 (2014).

    CAS  Article  Google Scholar 

  • 29.

    Connor, E. M., Eppihimer, M. J., Morise, Z., Granger, D. N. & Grisham, M. B. Expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in acute and chronic inflammation. J. Leukoc. Biol. 65, 349–355 (1999).

  • 30.

    Ito, R. et al. Interferon-γ is causatively involved in experimental inflammatory bowel disease in mice. Clin. Exp. Immunol. 146, 330–338 (2006).

    CAS  Article  Google Scholar 

  • 31.

    Ferreiro, R. & Barreiro-de Acosta, M. Infliximab: Pharmacology, Uses and Limitations 1st edn (eds Acevedo, A. D. M. & Gaitan, M. F.) 39–74 (Nova Biomedical, 2012).

  • 32.

    Vila-del Sol, V., Punzón, C. & Fresno, M. IFN-γ-induced TNF-α expression is regulated by interferon regulatory factors 1 and 8 in mouse macrophages. J. Immunol. 181, 4461–4470 (2008).

    CAS  Article  Google Scholar 

  • 33.

    Wesemann, D. R. & Benveniste, E. N. STAT-1α and IFN-γ as modulators of TNF-α signaling in macrophages: regulation and functional implications of the TNF receptor 1:STAT-1α complex. J. Immunol. 171, 5313–5319 (2003).

    CAS  Article  Google Scholar 

  • 34.

    Shimaoka, M. et al. AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity up-regulation in lymphocytes. Proc. Natl Acad. Sci. USA 103, 13991–13996 (2006).

    CAS  Article  Google Scholar 

  • 35.

    Qi, J. P. et al. Identification, characterization, and epitope mapping of human monoclonal antibody J19 that specifically recognizes activated integrin α4β7. J. Biol. Chem. 287, 15749–15759 (2012).

    CAS  Article  Google Scholar 

  • 36.

    Kinashi, T. Intracellular signalling controlling integrin activation in lymphocytes. Nat. Rev. Immunol. 5, 546–559 (2005).

    CAS  Article  Google Scholar 

  • 37.

    Eun, J. P. et al. Aberrant activation of integrin α4β7suppresses lymphocyte migration to the gut. J. Clin. Invest. 117, 2526–2538 (2007).

    Article  Google Scholar 

  • 38.

    YANG, Y. et al. Construction and adhesive properties of a soluble MAdCAM‐1–Fc chimera expressed in a baculovirus system: phylogenetic conservation of receptor–ligand interaction. Scand. J. Immunol. 42, 235–247 (1995).

    CAS  Article  Google Scholar 

  • 39.

    Rungta, R. L. et al. Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Mol. Ther. Nucleic Acids 2, e136 (2013).

    CAS  Article  Google Scholar 

  • 40.

    McCall, M. J., Diril, H. & Meares, C. F. Simplified method for conjugating macrocyclic bifunctional chelating agents to antibodies via 2-iminothiolane. Bioconjugate Chem. 1, 222–226 (1990).

    CAS  Article  Google Scholar 

  • 41.

    Loening, A. M. & Gambhir, S. S. AMIDE: a free software tool for multimodality medical image analysis. Mol. Imaging 2, 131–137 (2003).

    Article  Google Scholar 

  • Coinsmart. Beste Bitcoin-Börse in Europa
    Source: https://www.nature.com/articles/s41565-021-00928-x

    spot_img

    Latest Intelligence

    spot_img