Zephyrnet Logo

Coherent magnon-induced domain-wall motion in a magnetic insulator channel – Nature Nanotechnology

Date:

  • Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D. 43, 264001 (2010).

  • Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

  • Khitun, A., Bao, M. & Wang, K. L. Magnonic logic circuits. J. Phys. D 43, 264005 (2010).

  • Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  • Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  • Csaba, G., Papp, Á. & Porod, W. Perspectives of using spin waves for computing and signal processing. Phys. Lett. A 381, 1471–1476 (2017).

    Article  CAS  Google Scholar 

  • Sheng, L., Chen, J., Wang, H. & Yu, H. Magnonics based on thin-film iron garnets. J. Phys. Soc. Jpn 90, 081005 (2021).

    Article  Google Scholar 

  • Yan, P., Wang, X. S. & Wang, X. R. All-magnonic spin-transfer torque and domain wall propagation. Phys. Rev. Lett. 107, 177207 (2011).

    Article  CAS  Google Scholar 

  • Kovalev, A. A. & Tserkovnyak, Y. Thermomagnonic spin transfer and Peltier effects in insulating magnets. Europhys. Lett. 97, 67002 (2012).

    Article  Google Scholar 

  • Hinzke, D. & Nowak, U. Domain wall motion by the magnonic spin Seebeck effect. Phys. Rev. Lett. 107, 027205 (2011).

    Article  CAS  Google Scholar 

  • Wang, Y. et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 366, 1125–1128 (2019).

    Article  CAS  Google Scholar 

  • Jiang, W. et al. Direct imaging of thermally driven domain wall motion in magnetic insulators. Phys. Rev. Lett. 110, 177202 (2013).

    Article  Google Scholar 

  • Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A. & Liu, L. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).

    Article  CAS  Google Scholar 

  • Pirro, P. et al. Experimental observation of the interaction of propagating spin waves with Néel domain walls in a Landau domain structure. Appl. Phys. Lett. 106, 232405 (2015).

    Article  Google Scholar 

  • Sheng, L. et al. Spin wave propagation in a ferrimagnetic thin film with perpendicular magnetic anisotropy. Appl. Phys. Lett. 117, 232407 (2020).

    Article  CAS  Google Scholar 

  • Wojewoda, O. et al. Propagation of spin waves through a Néel domain wall. Appl. Phys. Lett. 117, 022405 (2020).

    Article  CAS  Google Scholar 

  • Mikhailov, A. V. & Yaremchuk, A. I. Forced motion of a domain wall in the field of a spin wave. JETP Lett. 39, 354–357 (1984).

    Google Scholar 

  • Kishine, J.-I. & Ovchinnikov, A. S. Adiabatic and nonadiabatic spin-transfer torques in the current-driven magnetic domain wall motion. Phys. Rev. B 81, 134405 (2010).

    Article  Google Scholar 

  • Burrowes, C. et al. Non-adiabatic spin-torques in narrow magnetic domain walls. Nat. Phys. 6, 17–21 (2010).

    Article  CAS  Google Scholar 

  • Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).

    Article  CAS  Google Scholar 

  • Wang, X.-G., Guo, G.-H., Nie, Y.-Z., Zhang, G.-F. & Li, Z.-X. Domain wall motion induced by the magnonic spin current. Phys. Rev. B 86, 054445 (2012).

    Article  Google Scholar 

  • Chang, L.-J. et al. Ferromagnetic domain walls as spin wave filters and the interplay between domain walls and spin waves. Sci. Rep. 8, 3910 (2018).

    Article  Google Scholar 

  • Wang, X.-G., Guo, G.-H., Zhang, G.-F., Nie, Y.-Z. & Xia, Q.-L. Spin-wave resonance reflection and spin-wave induced domain wall displacement. J. Appl. Phys. 113, 213904 (2013).

    Article  Google Scholar 

  • Han, D.-S. et al. Magnetic domain-wall motion by propagating spin waves. Appl. Phys. Lett. 94, 112502 (2009).

    Article  Google Scholar 

  • Seo, S.-M., Lee, H.-W., Kohno, H. & Lee, K.-J. Magnetic vortex wall motion driven by spin waves. Appl. Phys. Lett. 98, 012514 (2011).

    Article  Google Scholar 

  • Kim, J. S. et al. Interaction between propagating spin waves and domain walls on a ferromagnetic nanowire. Phys. Rev. B 85, 174428 (2012).

    Article  Google Scholar 

  • Risinggård, V., Tveten, E. G., Brataas, A. & Linder, J. Equations of motion and frequency dependence of magnon-induced domain wall motion. Phys. Rev. B 96, 174441 (2017).

    Article  Google Scholar 

  • Kim, K.-W. et al. Unidirectional magnon-driven domain wall motion due to the interfacial Dzyaloshinskii-Moriya interaction. Phys. Rev. Lett. 122, 147202 (2019).

    Article  CAS  Google Scholar 

  • Torrejon, J. et al. Unidirectional thermal effects in current-induced domain wall motion. Phys. Rev. Lett. 109, 106601 (2012).

    Article  CAS  Google Scholar 

  • Shokr, Y. A. et al. Steering of magnetic domain walls by single ultrashort laser pulses. Phys. Rev. B 99, 214404 (2019).

    Article  CAS  Google Scholar 

  • Woo, S., Delaney, T. & Beach, G. S. D. Magnetic domain wall depinning assisted by spin wave bursts. Nat. Phys. 13, 448–454 (2017).

    Article  CAS  Google Scholar 

  • Hämäläinen, S. J., Madami, M., Qin, H., Gubbiotti, G. & van Dijken, S. Control of spin-wave transmission by a programmable domain wall. Nat. Commun. 9, 4853 (2018).

    Article  Google Scholar 

  • Banerjee, C. et al. Magnonic band structure in a Co/Pd stripe domain system investigated by Brillouin light scattering and micromagnetic simulations. Phys. Rev. B 96, 024421 (2017).

    Article  Google Scholar 

  • Liu, C. et al. Current-controlled propagation of spin waves in antiparallel, coupled domains. Nat. Nanotechnol. 14, 691–697 (2019).

    Article  CAS  Google Scholar 

  • Soumah, L. et al. Ultra-low damping insulating magnetic thin films get perpendicular. Nat. Commun. 9, 3355 (2018).

    Article  Google Scholar 

  • Fakhrul, T. et al. Magneto-optical Bi:YIG films with high figure of merit for nonreciprocal photonics. Adv. Opt. Mater. 7, 1900056 (2019).

    Article  Google Scholar 

  • Callen, H. On growth-induced anisotropy in garnet crystals. Mater. Res. Bull. 6, 931–938 (1971).

    Article  CAS  Google Scholar 

  • Kumar, R., Samantaray, B. & Hossain, Z. Ferromagnetic resonance studies of strain tuned Bi:YIG films. J. Phys. Condens. Matter 31, 435802 (2019).

  • Bailleul, M., Olligs, D., Fermon, C. & Demokritov, S. O. J. E. L. Spin waves propagation and confinement in conducting films at the micrometer scale. Europhys. Lett. 56, 741–747 (2001).

    Article  CAS  Google Scholar 

  • Vlaminck, V. & Bailleul, M. Spin-wave transduction at the submicrometer scale: experiment and modeling. Phys. Rev. B 81, 014425 (2010).

    Article  Google Scholar 

  • Collet, M. et al. Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque. Nat. Commun. 7, 10377 (2016).

    Article  CAS  Google Scholar 

  • Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  Google Scholar 

  • Oh, S.-H. et al. Coherent terahertz spin-wave emission associated with ferrimagnetic domain wall dynamics. Phys. Rev. B 96, 100407 (2017).

    Article  Google Scholar 

  • Cheng, Y., Chen, K. & Zhang, S. Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves. Appl. Phys. Lett. 112, 052405 (2018).

    Article  Google Scholar 

  • Wuth, C., Lendecke, P. & Meier, G. Temperature-dependent dynamics of stochastic domain-wall depinning in nanowires. J. Phys. Condens. Matter 24, 024207 (2012).

  • Nguyen, V. D. et al. Elementary depinning processes of magnetic domain walls under fields and currents. Sci. Rep. 4, 6509 (2014).

    Article  CAS  Google Scholar 

  • Avci, C. O. et al. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).

    Article  CAS  Google Scholar 

  • Caretta, L. et al. Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides. Nat. Commun. 11, 1090 (2020).

    Article  CAS  Google Scholar 

  • Duan, Z. et al. Nanowire spin torque oscillator driven by spin orbit torques. Nat. Commun. 5, 5616 (2014).

    Article  CAS  Google Scholar 

  • Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012).

    Article  CAS  Google Scholar 

  • spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?