Zephyrnet Logo

Bright solid-state sources for single photons with orbital angular momentum

Date:

  • 1.

    Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    CAS  Article  Google Scholar 

  • 2.

    Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    CAS  Article  Google Scholar 

  • 3.

    Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545–1548 (2013).

    CAS  Article  Google Scholar 

  • 4.

    Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    CAS  Article  Google Scholar 

  • 5.

    Vallone, G. et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014).

    Article  CAS  Google Scholar 

  • 6.

    Bechmann-Pasquinucci, H. & Tittel, W. Quantum cryptography using larger alphabets. Phys. Rev. A 61, 062308 (2000).

    Article  Google Scholar 

  • 7.

    Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

    Article  CAS  Google Scholar 

  • 8.

    Romero, J., Giovannini, D., Franke-Arnold, S., Barnett, S. M. & Padgett, M. J. Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement. Phys. Rev. A 86, 012334 (2012).

    Article  CAS  Google Scholar 

  • 9.

    Chen, L. et al. Experimental ladder proof of Hardy’s nonlocality for high-dimensional quantum systems. Phys. Rev. A 96, 022115 (2017).

    Article  Google Scholar 

  • 10.

    Krenn, M., Handsteiner, J., Fink, M., Fickler, R. & Zeilinger, A. Twisted photon entanglement through turbulent air across Vienna. Proc. Natl Acad. Sci. USA 112, 14197–14201 (2015).

    CAS  Article  Google Scholar 

  • 11.

    Krenn, M. et al. Twisted light transmission over 143 km. Proc. Natl Acad. Sci. USA 113, 13648–13653 (2016).

    CAS  Article  Google Scholar 

  • 12.

    Sit, A. et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017).

    Article  Google Scholar 

  • 13.

    Mirhosseini, M. et al. High-dimensional quantum cryptography with twisted light. New J. Phys. 17, 033033 (2015).

    Article  CAS  Google Scholar 

  • 14.

    Wang, X. L. et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015).

    CAS  Article  Google Scholar 

  • 15.

    Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    CAS  Article  Google Scholar 

  • 16.

    Wang, X. L. et al. 18-Qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).

    CAS  Article  Google Scholar 

  • 17.

    Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  CAS  Google Scholar 

  • 18.

    Unsleber, S. et al. Highly indistinguishable on-demand resonance fluorescence photons from a deterministic quantum dot micropillar device with 74% extraction efficiency. Opt. Express 24, 8539–8546 (2016).

    CAS  Article  Google Scholar 

  • 19.

    Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS  Article  Google Scholar 

  • 20.

    He, Y. M. et al. Deterministic implementation of a bright, on-demand single-photon source with near-unity indistinguishability via quantum dot imaging. Optica 4, 802–808 (2017).

    CAS  Article  Google Scholar 

  • 21.

    Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    CAS  Article  Google Scholar 

  • 22.

    Liu, J. et al. Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters. Rev. Sci. Instrum. 88, 023116 (2017).

    Article  CAS  Google Scholar 

  • 23.

    Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    CAS  Article  Google Scholar 

  • 24.

    Strain, M. J. et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters. Nat. Commun. 5, 4856 (2014).

    CAS  Article  Google Scholar 

  • 25.

    Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    CAS  Article  Google Scholar 

  • 26.

    Zhang, J. et al. An InP-based vortex beam emitter with monolithically integrated laser. Nat. Commun. 9, 2652 (2018).

    CAS  Article  Google Scholar 

  • 27.

    Fickler, R. et al. Quantum entanglement of high angular momenta. Science 338, 640–643 (2012).

    CAS  Article  Google Scholar 

  • 28.

    Strauf, S. et al. Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006).

    CAS  Article  Google Scholar 

  • 29.

    Liu, J. et al. A comparison between experiment and theory on few-quantum-dot nanolasing in a photonic-crystal cavity. Opt. Express 21, 28507–28512 (2013).

    CAS  Article  Google Scholar 

  • 30.

    Blakemore, J. S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123 (1982).

    CAS  Article  Google Scholar 

  • 31.

    Gehrsitz, S. et al. The refractive index of AlxGa1−xAs below the band gap: accurate determination and empirical modeling. J. Appl. Phys. 87, 7825 (2000).

    CAS  Article  Google Scholar 

  • 32.

    Zhu, J., Chen, Y., Zhang, Y., Cai, X. & Yu, S. Spin and orbital angular momentum and their conversion in cylindrical vector vortices. Opt. Lett. 39, 4435–4438 (2014).

    Article  Google Scholar 

  • 33.

    Zhu, J., Cai, X., Chen, Y. & Yu, S. Theoretical model for angular grating-based integrated optical vortex beam emitters. Opt. Lett. 38, 1343–1345 (2013).

    Article  Google Scholar 

  • 34.

    Moreno, I., Davis, J. A., Ruiz, I. & Cottrell, D. M. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Opt. Express 18, 7173–7183 (2010).

    CAS  Article  Google Scholar 

  • 35.

    Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).

    Article  Google Scholar 

  • 36.

    Yue, Y. et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber. IEEE Photon. J. 4, 535–543 (2012).

    Article  Google Scholar 

  • 37.

    Li, S. & Wang, J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings × 22 modes). Sci. Rep. 4, 3853 (2014).

    CAS  Article  Google Scholar 

  • 38.

    Vasnetsov, M. V., Pas’ko, V. A. & Soskin, M. S. Analysis of orbital angular momentum of a misaligned optical beam. New J. Phys. 7, 46 (2005).

    Article  Google Scholar 

  • 39.

    Winger, M. et al. Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009).

    Article  CAS  Google Scholar 

  • 40.

    Zhou, Z. Y. et al. Orbital angular momentum photonic quantum interface. Light Sci. Appl 5, e16019 (2016).

    CAS  Article  Google Scholar 

  • 41.

    Liu, S. et al. Coherent manipulation of a three-dimensional maximally entangled state. Phys. Rev. A 98, 062316 (2018).

    Article  Google Scholar 

  • 42.

    Heindel, T. et al. Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency. Appl. Phys. Lett. 96, 011107 (2010).

    Article  CAS  Google Scholar 

  • 43.

    Yuan, X. et al. Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics. Nat. Commun. 9, 3058 (2018).

    Article  CAS  Google Scholar 

  • 44.

    Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-00827-7

    spot_img

    Latest Intelligence

    spot_img