Connect with us

Big Data

Book: Python Machine Learning Blueprints




Key Features

  • Put machine learning principles into practice to solve real-world problems
  • Get to grips with Python’s impressive range of Machine Learning libraries and frameworks
  • From retrieving data from APIs to cleaning and visualization, become more confident at tackling every stage of the data pipeline

Book Description

Machine Learning is transforming the way we understand and interact with the world around us. But how much do you really understand it? How confident are you interacting with the tools and models that drive it?

Python Machine Learning Blueprints puts your skills and knowledge to the test, guiding you through the development of some awesome machine learning applications and algorithms with real-world examples that demonstrate how to put concepts into practice.

You’ll learn how to use cluster techniques to discover bargain air fares, and apply linear regression to find yourself a cheap apartment – and much more. Everything you learn is backed by a real-world example, whether its data manipulation or statistical modelling.

That way you’re never left floundering in theory – you’ll be simply collecting and analyzing data in a way that makes a real impact.

What you will learn

  • Explore and use Python’s impressive machine learning ecosystem
  • Successfully evaluate and apply the most effective models to problems
  • Learn the fundamentals of NLP – and put them into practice
  • Visualize data for maximum impact and clarity
  • Deploy machine learning models using third party APIs
  • Get to grips with feature engineering

About the Author

Alexander T. Combs is an experienced data scientist, strategist, and developer with a background in financial data extraction, natural language processing and generation, and quantitative and statistical modeling. He is currently a full-time lead instructor for a data science immersive program in New York City.

Table of Contents

  1. The Python Machine Learning Ecosystem
  2. Build an App to Find Underpriced Apartments
  3. Build an App to Find Cheap Airfares
  4. Forecast the IPO Market using Logistic Regression
  5. Create a Custom Newsfeed
  6. Predict whether Your Content Will Go Viral
  7. Forecast the Stock Market with Machine Learning
  8. Build an Image Similarity Engine
  9. Build a Chatbot
  10. Build a Recommendation Engine

The book is available here.

DSC Resources

Additional Reading

Follow us on Twitter: @DataScienceCtrl | @AnalyticBridge


Big Data

Seven Tools for Effective CDO Leadership




The position of Chief Data Officer (CDO) is relatively new in the federal government, and emerging regulations are providing leadership opportunities for the CDO. A new law, the Foundations for Evidence-Based Policymaking Act, went into effect on January 14, 2019, establishing a set of standards and practices for the United States federal government to modernize its data handling.

Title II of this act is called the Open, Public, Electronic and Necessary (OPEN) Government Data Act, which arose out of the 2013 Open Data Policy. The OPEN Government Data Act requires federal agencies to publish a comprehensive inventory of all data assets, made available as machine-readable data in an open format, under open licenses, as well as putting in place a non-politically appointed senior executive (now the CDO) responsible for actively managing data as an asset. “Not just to talk about it, not just try to leverage value for the enterprise, but to treat it like an asset,” said Corlan Budd, Manager of Data, and Analytics, and Technology Strategy with Ernst & Young. He discussed this during his presentation titled The Chief Data Officer as an Effective Leader at the DATAVERSITY® DGVision Conference. He shared seven tools that can help the CDO be a more effective leader, whether in a government agency, or in the private sector.

Key Responsibilities

Budd identified four key
responsibilities of the CDO:

  • Managing data as an asset
  • Transforming how the agency interacts with data
  • Value generation
  • Regulatory Compliance

Previously, government agencies treated data like a by-product of the system without much concern about practices around the data. Now that the CDO is responsible for changing the culture and transforming the way the agency interacts with data, compliance with the Evidence-Based Policymaking Act, as well as a number of other data privacy acts, including HIPAA, is within with the CDO’s purview. The CDO is also responsible for value generation, which is measured differently in the government space than it is in the private sector, he said. Rather than valuing the data and trying to monetize it, “we have to support the mission and improve public service,” he said.

Culture and the CDO

Budd quoted Peter Drucker: “Culture will eat strategy for breakfast.” Building an effective strategy is a waste of time if the culture puts up roadblocks to its success. The key to ensuring strategy is embraced rather than ‘eaten for breakfast,’ Budd said, is leadership, yet, “The culture and the organizational dynamics don’t necessarily line up for success immediately.” Cultural factors are dependent on context, and the organizational structure where the CDO resides, whether that is in finance, or risk, or another part of the organization. Support from the CIO and the dynamics of power above the CDO have an effect on autonomy. Culture issues below the CDO often stem from staff buy-in and stakeholder support.

Funding and Proving

The CDO must show the value of the data itself as well as the value of improving the organization’s relationship with data, while managing expectations about how and when this will happen.  Contracts that are project-based, or with more sophisticated capabilities tend to have an easier time getting funding than program-based proposals that could enhance customer value and provide better service company-wide. With some business units, he said, essentially the only value that they get is the ability to operate their program.

Innovation and transformation provide peak value when C-level
execs are able to make data-driven decisions, optimize performance, and reduce
costs. What often stands in the way of that is culture. The key is to change
from a program or business unit focus to an enterprise-wide approach. “Get
folks in a room and get them talking,” creating an environment that facilitates
conversation among data enthusiasts where they can discuss data issues and leverage
data sharing initiatives. This can provide a lot of value and open up
possibilities for positive cultural change, he said.

Assessing Culture: Hofstede’s
6 Dimensions of Culture

Budd suggests using three elements of social psychologist Geert Hofstede’s Six Dimensions of Culture as a guide to qualitatively assess the organizational culture: Individualism vs. collectivism, uncertainty avoidance, and long-term vs. short-term orientation.

  • Individualism vs. Collectivism: An
    individualistic culture values individual performance and recognition over
    playing a role as part of larger extended team or group. Loyalties in an
    individualistic culture are focused on the individual. Collectivist culture
    loyalties are focused on groups or departments. When building a team
    environment, everyone has to understand that in some circumstances they will be
    recognized for individual accomplishment, but in relationship to data, each
    person has a role as part of a team. “That helps the overall success of not
    just the chief data officer, but how effectively we can utilize our data and
    how much value we can get from our data for the entire organization, not just
    in that C-suite area.”
  • Short Term vs. Long Term Orientation: Budd
    was surprised at how prevalent short-term orientation was throughout his
    organization, with an almost complete lack of interest in any long-term
    orientation for strategy. The value of a strategy happens over the course of
    time, so he suggests finding some of the low-hanging fruit without sacrificing
    longer-term goals. When focusing on moving the needle from short-term
    orientation toward the long-term orientation side, “The only way I was able to
    do that was to satisfy some of the short-term need, at least for the moment,”
    which gave him enough momentum to focus in on some of the longer-term strategy
  • Low vs. High Uncertainty Tolerance: Uncertainty avoidance can be a stumbling block or a wise choice depending on the situation. Concern about investments in new technology is a good idea if the tool is unproven. Stakeholders may have difficulty buying in if there’s a high level of uncertainty about the vision or the likelihood of success, especially if they previously saw a Chief Data Officer who tried something similar and didn’t succeed the first time. With uncertainty avoidance, he considered his efforts a success if there was any move across the halfway point toward risk.

When you come across a situation where you’re on one extreme of the continuum, figure out how you can move that needle culture-wise back to an acceptable area for your strategy to succeed,” he said.

Effective Leadership: Adapt and Connect

Budd found two leadership principles from John Maxwell’s 21 Irrefutable Laws of Leadership particularly useful for developing skills needed to adapt to the existing environment and connect with the people in it.

  • The Law of the Lid: Leadership ability
    determines a person’s level of effectiveness. Implementing required changes
    without buy-in has a negative effect on culture, he said. “There are a lot of
    things that you just can’t do unless you have consensus.” Understand the importance
    of developing multiple leadership styles based on the existing culture, such as
    using a transformative leadership style in some circumstances, and democratic
    leadership in other circumstances. “When you need to develop consensus, you
    might have to switch your leadership style to one that’s a little bit more
  • The Law of Connection: Leaders touch a
    heart before they ask for a hand. A leader needs to develop a personal
    connectionbefore successfully affecting culture or leading individuals
    in the organization, said Budd. “Followers don’t necessarily follow a
    particular thing, but they will follow your vision, and if they connect with
    your vision, then they will follow you.”

Effective Leadership: Influence
and Motivate

Three more of Maxwell’s laws, as well as Jim Collins’ Turning the Flywheel provide guidance for learning how to influence and motivate others:

  • The Law of Explosive Growth: To add
    growth, lead followers. To multiply, lead leaders. The CDO is in a position to
    essentially lead the entire agency, because everyone is a consumer of data, he
    said. Identify a group of data consumers and empower them – enable them to the
    point where they can become leaders. “Now that you’re leading leaders, your
    impact for culture change has essentially multiplied.”
  • The Law of Influence: The true measure of
    leadership is your influence – nothing more, nothing less. Leadership skills
    build on one another and contribute to a leader’s level of influence.  “If we want to be effective, and the
    measurement of our effectiveness is our influence, then that’s what we need to
    make sure we’re honing in on.”
  • The
    Law of the Big Mo:
    Momentum is the leader’s best friend. It’s the little
    things that lead to the big things
  • The Flywheel Concept: Establish momentum
    early on in the process by getting some wins and providing short-term value.
    This is similar to riding a bike or turning a flywheel. “The first couple of
    strides are always really, really difficult, but once you get that momentum
    going when you’re riding the bike, then the machine does a lot of the work for

Effective Leadership: Sustainability

According to Jim Collins’ Good to Great, effectively leading an organization into greatness entails sustaining a certain level of performance and growth over time. “A leader’s lasting value is measured by how things continue after they’re gone,” said Budd, yet often when a leader leaves, their initiatives fall by the wayside. An effective leader uses Maxwell’s Law of Explosive Growthto build sustainability. “‘It takes a leader to raise a leader,’ so the essential strategy for sustainability is to develop leaders who will support your data initiatives into the future.”

Effective Leadership: First
Things First

To manage short-term value expectations, Budd recommends Steven
Covey’s concept of ‘first things first.’ With effective prioritizing, a leader
is able to focus on values, plan ahead, and have opportunities for networking,
relationship-building, and impacting the culture.

Budd uses the Eisenhower Decision Matrix as tool for effectively determining which tasks are important but not urgent, and how to move from reactive to proactive, “Instead of trying to get through the day putting out fires.”

As new activities are added to his plate, Budd uses the chart to
ask himself where they fit in the matrix and whether they line up with his priorities
and strategy. This process, he said, “provides some pretty good immediate
value.” Socializing the Eisenhower matrix can create buy-in and ownership among
team members. When all members participate in thinking through where time
should be spent and work together to ensure that quadrant one
(Important/Urgent) and quadrant two (Important/Not Urgent) are balanced,
priorities are shared and value becomes apparent. “The key also is making sure
that when you do that, you track the value and you measure it, and you
celebrate your win whenever you get one.”

Know Your Leadership

John Maxwell’s 5 Levels of Leadershipdefines a cumulative set of qualities for growth as a leader, and Budd suggests focusing on developing leaders in levels three and four. The level three leader has permission from followers and the authority to lead a high-performance team. As they move up to level four or level five, they can multiply their growth, building a sustainable data program and providing value to the organization that will outlast their tenure. Identify one or two leaders for each program, enable them, build them and let them lead, he said. “I don’t have to go and sell my strategy or my implementation to everyone, I’ve got a group of leaders that can help do that.” At level five a leader becomes able to develop leaders that can, in turn, develop leaders. “And now you’ve essentially multiplied your ability to grow.”

Want to learn more about DATAVERSITY’s upcoming events? Check out our current lineup of online and face-to-face conferences here.

Here is the video of the DGVision Presentation:

Image used under license from


Continue Reading

Big Data

Key Considerations for Executing a Successful M&A Data Migration or Carve-Out




Click to learn more about author Steele Arbeeny

Mergers, acquisitions, and divestitures
are just as much of an undertaking for a CIO as they are for a CFO; they are
impactful on both the business and technology side. Determining which SAP
systems and data sets to migrate, integrate, or carve-out as part of the deal —
and then executing on those migrations or carve-outs — can be costly, lengthy,
and incredibly complex processes, which in turn impacts your overall timeline.
Missteps in the data migration process can result in unnecessary technical
debt, potential Transition Services Agreement penalties, and even delays in achieving
your final goals for the project. 

There are some key considerations that I would recommend to companies undergoing mergers, acquisitions, or divestitures when it comes to their data migration needs. Chief among those considerations is the need to build automation into the heart of your migration or carve-out strategies and why aligning with the right software-driven partner is integral for executing a data migration or carve-out that stays on track and achieves overall timelines and goals.

Create a Clear Plan of Action

Mergers, acquisitions, and
divestitures are incredibly complex processes. Obviously, no business
undertakes one without first outlining a clear plan of action and a timeline
for that plan to proceed along. But it’s crucial that that plan also prioritizes
the data migration side of the operation; it can’t just be a business-facing
process. Data migrations and carve-outs are among the most daunting tasks that
come with executing a merger, acquisition, or divestiture — so getting it right
is critical to accomplishing the broader mission at hand.

While every company’s situation is
different, there are a few key questions that businesses undergoing a merger,
acquisition, or divestiture need to ask themselves to ensure their data needs
aren’t being overlooked:

  • Do we need to
    integrate the company we just bought into our ERP systems? In the case of a
    divestiture: Do we need to identify and carve out data from our systems?
  • Does the company we’re
    acquiring use SAP or another kind of ERP? Do both companies already share the
    same kind of ERP?
  • What regulatory issues
    may come up that could lengthen, halt, or delay the process? Are there any
    potential TSA compliance hurdles that we might come up against?

    • One area to consider
      is sales overlaps. With a 20 percent overlap from balance sheet to balance
      sheet, this can present a significant potential regulatory obstacle.
  • How quickly do we need
    the data migration or carve-out done?

While these may seem like fundamental
first steps, they’re crucial ones. Without a clear outline of your data needs,
you could end up in a situation where a merger, acquisition, or divestiture
results in the new company taking on excessive levels of technical debt or
violating regulatory compliance — which itself carries a whole host of new
problems with which to deal.

Putting Automation Front and Center

Whether you’re integrating or carving out data, the process is incredibly labor-intensive and rife with repetitive tasks. More than that, each decision to be made carries potentially far-reaching consequences for everything from data history preservation and master data relevance to security and compliance. In other words, getting it right the first time is business-critical.

This is all the more the reason why
automation needs to be treated as an integral part of these processes.
Automating data migrations or carve-outs ensures that the volume of menial
tasks is being executed both quickly and painlessly while leaving the more
weighted choices to be done manually. Automation ensures decision-makers are
essentially only spending their time and resources on the tasks that most
require their input — all of which enables IT teams to best allocate and
prioritize their resources for performing even the most challenging carve-out
or migration plans.

This also comes in handy in the
aftermath of the merger, where automation can speed up post-merger/acquisition
integration projects, both accelerating how quickly and seamlessly the
migration can take hold while providing a new level of insight and control over
the process that can’t otherwise be achieved through traditional, manual

Executing with Minimal Business

After building a plan of action
and wrapping it around an automation-driven strategy, the next consideration
ultimately turns to the go-live date: Can your business handle a disruption
that lasts longer than a weekend? How quickly do you need to execute the data
migration, or carve-out, to avoid lengthy disruptions in your business
operations? Just how long is too long?

This might be the last step in the
process, but it’s no less critical. Being able to carry out your new data
migration or carve-out with minimal downtime or disruptions to the business is
essentially the first proving ground of how successful your new merger,
acquisition, or divestiture will be. To that end, businesses undergoing these
transformations need to ensure they’ve aligned themselves with the right
software partner ahead of time. Successful data migrations and carve-outs are
integral to the success of the newly merged or divested company and key to
averting the technical debt or TSA violations that can otherwise knock you off
track. Getting that done on time and in line with your goals requires getting
off on the right foot with the right partner.

With so much at stake, businesses
undergoing a merger, acquisition, or divestiture need nothing less than a
predictable process for executing their data migration and carve-out needs — a
software-driven, end-to-end, automated process that is predictable in its
speed, efficiency, and success rate in delivering on your goals within your


Continue Reading

Big Data

Parallel ways of Data Scientist and Machine Learning




👉 📊 There are endless conversations, debates, and discussions over this popular topic, and it can be a little overwhelming to know where to start from data science experts to complete newbies.

🔥 While, from researchers to students, industry experts, and machine learning (ML) enthusiasts — keeping up with the best and the latest machine learning research is a matter of finding reliable information. Here in this blog, we are going to share information on how data science is evolving with the rising demand for Machine Learning.

Inside 🎰 Machine Learning- 👇

In amazingly simple words every time we pick our phones to get seek information from any search engine like google or any social media platform like Facebook or Instagram, Machine Learning is playing its role each moment. It is the role of Machine Learning to provide the most relevant information/ recommendations to the searcher. From searching for good restaurant hopping options to tips for skincare regime, we are contributing machine learning through our searches on the internet, without realizing it.

🎯 Machine Learning technology plays a big role in collecting and keeping track of user search behavioral data for the companies, so the same can be taken into consideration while taking the important product of services related decisions by Data Scientist or business personnel.

🗨 So, this was the explanation of how in our daily lives we are interacting with Machine learning Cluelessly. Now let us understand the role of data scientists and how it related to Machine Learning.

📉 Who is a Data Scientist?

🚀 This can be drafted as the one who is an expert in extracting meaningful information from the heaps of data. They are specialists, gathering, and analyzing large sets of structured and unstructured data. With a combination of computer science, statistics, and mathematics, Data scientists are analytical experts who utilize their skills both technologically and ethically to find trends and manage data. They analyze, process, and model data then translate the results to create actionable plans for companies and other organizations.

👩‍💻 The Sufficient knowledge of different Machine Learning techniques and like Python, SAS, R, and SQL/NoSQL database, and other tools Data Scientist can perform the task with very few challenges and easily outrank the competitor.

🎰 Machine Learning for Data Scientist or Vise-Versa? 👇

Taking into consideration the role of Data Scientist discussed above- without data, machine learning does not fulfill its use. This is how machine learning and data science go hand in hand as they both are incomplete without each other.

🗨 Where machine learning collects the data for Data scientists to evaluate and extract the meaningful out of it. With the increased use of technology/internet, the use of ML acts as a spur to push data science in high demand.

In the world of 📈 data science one can never feel the shortage of tools and algorithms to be applied to data, with this we can say data science skills also involves the ability to evaluate Machine learning and can make the machine as smart as to make their analyses process easier. Going forward, essential levels of machine learning will become a benchmark for data scientists. 🔻

Seeing from a different perspective, to match human abilities, machines need to be smart enough and Machine Learning is the soul of Artificial intelligence.

👨‍⚖️ Data Scientists must understand Machine Learning for the best outcomes and quality results. This can help machines to make the right decisions and smarter actions in real-time with zero human intervention. Hence, Data Scientists must acquire skills in Machine Learning. 👇


📖 Conclusion-

In the world of Data Science, Machine learning has already proven its worth, it is turning out to be the best solution to a deeper analysis of a huge amount of data. Data scientists must acquire knowledge of ML to standout in the competitive market.

✍ Author Bio :⤵

Senior Data Scientist and Alumnus of IIM- C (Indian Institute of Management – Kolkata) with over 25 years of professional experience Specialized in Data Science, Artificial Intelligence, and Machine Learning.
PMP Certified
ITIL Expert certified APMG, PEOPLECERT, and EXIN Accredited Trainer for all modules of ITIL till Expert Trained over 3000+ professionals across the globe currently authoring a book on ITIL “ITIL MADE EASY”.

Conducted myriad Project management and ITIL Process consulting engagements in various organizations. Performed maturity assessment, gap analysis, and Project management process definition and end to end implementation of Project management best practices. 👇

👉 Social Profile Links

Twitter account URL

Facebook Profile URL

Linked In Profile URL



Continue Reading
Blockchain News2 hours ago

Ethereum City Builder MCP3D Goes DeFi with $MEGA Token October 28

Blockchain News3 hours ago

Why Bitcoin’s Price Is Rising Despite Selling Pressure from Crypto Whales

Blockchain News4 hours ago

Smart Contract 101: MetaMask

Blockchain News5 hours ago

New Darknet Markets Launch Despite Exit Scams as Demand Rises for Illicit Goods

Blockchain News5 hours ago

Bitcoin Millionaires at an All-Time High as Analysts Warn of a Pullback Before BTC Moves Higher

Fintech5 hours ago

The Impact of BPM On the Banking And Finance Sector

Energy6 hours ago

New Found Intercepts 22.3 g/t Au over 41.35m and 31.2 g/t Au over 18.85m in Initial Step-Out Drilling at Keats Zone, Queensway Project, Newfoundland

Energy6 hours ago

Kennebec County Community Solar Garden Reaches Project Milestone

Energy6 hours ago

Kalaguard® SB Sodium Benzoate Registered Under EPA FIFRA

Energy6 hours ago

LF Energy Launches openLEADR to Streamline Integration of Green Energy for Demand Side Management

Energy6 hours ago

Thermal Barrier Coatings Market To Reach USD 25.82 Billion By 2027 | CAGR of 4.9%: Reports And Data

Blockchain News7 hours ago

$1 Billion in Bitcoin Moved, Making It the Largest Dollar Value Crypto Transaction in History

AR/VR8 hours ago

Digital Catapult’s Augmentor Programme Reveals 10 new XR Startups

Esports8 hours ago

erkaSt joins NG

AR/VR8 hours ago

Hands-on: Impressive PS5 DualSense Haptics & Tracking Tech Bodes Well for Future PSVR Controllers

Blockchain News9 hours ago

Alibaba Founder Jack Ma Criticizes Current Financial Regulations

EdTech9 hours ago

Google Classroom Comments: All You Need to Know! – SULS086

Blockchain News9 hours ago

Bank for International Settlements to Issue a PoC CBDC With the Swiss Central Bank Before the End of 2020

Blockchain News10 hours ago

Ripple CEO Disagrees with Coinbase CEO’s Apolitical Work Policy, Considers Relocating Overseas

Cyber Security11 hours ago

Smart Solutions to Screen Mirroring iPad to Samsung TV

Esports12 hours ago

Video: TeSeS vs. Vitality

Big Data13 hours ago

Seven Tools for Effective CDO Leadership

Big Data13 hours ago

Key Considerations for Executing a Successful M&A Data Migration or Carve-Out

Cyber Security13 hours ago

Best Powered Subwoofer Car Reviews and Buying Guide

AR/VR14 hours ago

Jorjin Technologies announcing J7EF, the latest of its J-Reality

Big Data14 hours ago

Parallel ways of Data Scientist and Machine Learning

Supply Chain15 hours ago

The New Role of Agricultural Machinery to Work the Land

Energy17 hours ago

LONGi fornece 101 MW em módulos bifaciais para uma usina de larga escala no Chile.

Energy17 hours ago

LONGi suministra 101 MW en módulos bifaciales para una planta de energía ultra grande en Chile

Energy18 hours ago

Unabhängige Test bestätigen, dass der neue flüssigkeitsgekühlte Brennstoffzellenstapel von HYZON Motors bei der Leistungsdichte weltweit führend ist

Cyber Security18 hours ago

Francisco Partners to Buy Forcepoint from Raytheon Technologies

Energy19 hours ago

WHO experts acclaim Arawana as an oil of the 5G era, and they recommend the consumption of trans-fat-free cooking oils

Energy20 hours ago

FIBRA Prologis Anuncia a Carlos Elizondo Mayer Serra como nuevo Miembro Independiente del Comité Técnico

Payments20 hours ago

Post Office to close 600 ATMs

Payments20 hours ago

Westpac rolls out customer complaint resolution system

Cyber Security20 hours ago

Threat Landscaping

Ecommerce20 hours ago

VTEX Opens Office in Singapore to better serve its Global Customers in…

Ecommerce20 hours ago

StrikeTru Accelerates Momentum with New Client Wins & Strategic…

Ecommerce20 hours ago

Guidance Celebrates Winning BigCommerce 2020 Partner Award

Ecommerce20 hours ago

Introducing A Brand New Revolutionary Tech-Infused Apparel Company…