Connect with us


Best mobile tech 2021: A gadget pro’s top travel picks



While I live in the Puget Sound area, I travel about once a month to places around the US to get work done. A two-hour daily train commute warrants a plethora of mobile tech and accessories to support those devices even at home. Over the years, I have found the following list essential for hitting the road.

There are alternatives for most of the gear listed here, so you can pick your favorite if you live in a certain ecosystem or have a preference for a particular brand. This list is intended to help make sure you don’t leave anything essential behind, as I have learned over the years…

Entertainment and work on the go


Most travelers have a laptop with them to get work done, but I prefer using my iPad for quick tasks, entertainment, and handwriting with the Apple Pencil. It’s a perfect device for meetings where you want to stay engaged with others and treat your tablet as a digital notepad surface. It fits well with your snacks on an airline tray and can be outfitted with a keyboard if you want a reliable laptop replacement.

Apple’s 2020 iPad Air and 2021 iPad Pro devices are outfitted with a USB-C port for charging, which is a bit more universal for those who use more than iOS devices. There are capable cameras on the back so you can use the tablet to scan documents or capture other memories while on the go.

It’s tough to beat an iPad for the portable entertainment experience with excellent vivid displays and every media app you can imagine being right at your fingertips. You can load up your iPad with content from many subscription services and never worry about poor content at your travel destination.

The latest iPad Pro models sport the Apple M1 processor and soon iOS 15 (in public beta phase) will launch with further enhancements to make an iPad an extremely capable device for work and play.


  •    Best tablet available
  •    Responsive and fluid user experience 
  •    5G options for connectivity at all times


  •    Can be expensive
  •    Susceptible to breakage if dropped
  •    Apple Pencil is an expensive accessory 

$539 at Amazon $599 at Apple $600 at Best Buy

Travel in peace


While over-the-ear headphones are the best at blocking out the world around you when you want to concentrate and focus on work, they can also be bulky for travel. Sony’s new WF-1000XM4 earbuds offer just about every function its high-powered cans do in a small form factor that fits in your front pocket.

Sony offers capable smartphone software and actually innovated a bit on the earbud tip. The tip offers a material that appears to be a combination of silicone and Comply tips with the look and feel of silicone, but with the rigidity of a Comply material. It’s fantastic, and the earbuds stay in my ears very well without having to squeeze down the tip to fit. They are also very comfortable for long-term wear.

The Sony WF-1000XM4 earbuds are 10% lighters than the Mark 3 version with a 40% smaller charging case. An alternative to these is the Apple AirPods Pro.


  •    Stunning audio performance 
  •    Very long battery life 
  •    Speak-to-chat option


  •    Expensive 
  •    It may be a bit large for some ears

$278 at Amazon

Capture all of your travel adventures


Your friends and family cannot always travel with you, and one way to share your adventures, whether they are for work or play, is with an action camera. The GoPro Hero9 Black was released in 2020 and is one of the best mobile cameras available today with a fairly reasonable sub-$400 price.

One feature that sets this GoPro apart from past models is the large front color display that is perfect for setting you up in the shot. It also supports an amazing array of still and video resolutions so you can capture the content you want in various levels of detail.

GoPro continues to advance the smartphone software that connects to your camera, and there is even a GoPro Labs capability that lets you explore future software features now.


  •    Color front display for positioning
  •    20MP resolution photos
  •    Long battery life


  •    Larger than previous GoPro cameras
  •    The rear touchscreen can be finicky at times
  •    Voice control not always consistent

$398 at Amazon $400 at Best Buy $369 at Adorama

Immerse yourself in a book by the water


It’s been a few years since I bought my Amazon Kindle Oasis, but it still serves me well and is my constant travel companion. The newest model has an adjustable warm light function and is priced more affordably, starting at $250.

One major reason I purchased this model Kindle was the IPX8 water-resistant feature to enjoy reading books at the beach or by the pool. This model also has physical buttons, so it is easy to hold with one hand and advance through the book with a simple button press with that same hand.

You can also enjoy Audible books on the Kindle Oasis, so you are not limited to reading.


  •    Ergonomic form factor 
  •    Waterproof design
  •    Fantastic display with customized reading options 


  •    Expensive for an ebook reader

$279 at Amazon

Travel bags for your tech


There seems to be an almost unlimited number of gear bag options available today. However, if you want something you can rely upon for today and decades into the future, you should consider a WaterField Designs bag. They are made in San Francisco with high-quality materials, excellent construction, and thoughtful design elements.

For the past couple of years, WaterField Designs has involved customers in the design process of some gear bags. Two recent launches that came about through this unique interactive design process are the Packable Backpack and Hip Sling Bag collections.

The Packable Backpack magically folds up into a very small form factor and then unpacks for use. The unique materials and design make this possible, and there is a lot to like in this backpack.

The Hip Sling Bag takes the idea of a fanny pack to another level with a couple of different options for horizontal or vertical wear.


  •    Stunning, high-quality design and materials
  •    Optimized for your devices
  •    Attractive color and style options 


  •    More expensive than other bags 

$169 at WaterField (Hip Sling) WaterField (Backpack)

Power, light, and air in one package


There are times in your life when things go wrong, and when you need help with an emergency, there is essential gear required to get you back up and running. Mophie’s new Powerstation Go Rugged with Air Compressor may be one of the best pieces of gear to have in your automobile, boat, travel trailer, or field office. This $159.95 compact package provides portable power, vehicle/marine battery charging, compressed air, and light to help you resolve several problems.

The Mophie Powerstation Go Rugged with Air Compressor weighs in at just 2.54lbs and measures 241 x 118 x 47mm in size. It is available now and is one of the most useful accessories I have ever tested. Mophie provides a two-year warranty with the Powerstation Go Rugged. All functions work as advertised, and it is the perfect emergency safety device for anyone who drives bikes, camps, boats and enjoys the outdoors.


  •    Several use options in one battery pack 
  •    Very bright flashlight with red emergency color 
  •    All the tips you need to inflate your gear 


  •    Expensive 
  •    Short jumper cables  

$159 at Zagg

Keep track of your gear on the road


If you tend to misplace your keys, wallet, or other essentials, then you may have considered a Tile tracker in the past. Apple’s newest entry in the mobile space is the AirTag that uses Bluetooth and the vast worldwide network of Apple iOS devices to track the AirTag.

Apple has designed a secure tracker that can help you find missing items with an AirTag attached without disclosing to the people the AirTag is connecting to that you are looking for your lost AirTag. Things don’t even have to be lost, as you can use these to track a pet, child or other objects that have an AirTag attached.

The ultra-wideband chip inside your iPhone can also work with Precision Finding to locate your AirTag, including providing you with directions to your lost AirTag.


  •    Long battery life
  •    Replaceable battery 
  •    Affordable 


  •    No integrated key loop
  •    Requires iOS device 

$29 at Amazon $29 at Best Buy $30 at Target

Charge your gear in a hotel with one outlet


Many years ago, I purchased a small device that provided me with three standard outlets and a small cord to plug into a single outlet since I learned that many hotels have limited outlets. I also found it easier to connect one plug to an international adapter for foreign travel.

The Belkin 3-outlet Mini Surge Protector with USB ports is a very affordable accessory that is sure to keep you and the family happy on a road trip. It is currently priced at just $29.99 and includes $75 000 in connected equipment warranty coverage.

In today’s mobile world, we often find the need to charge up several devices in the evening. Smartphones, tablets, computers, headsets, watches, cameras, and more travel with us and need to stay powered up for the next day.


  •    Three standard outlets and 2 USB-A ports
  •    Direct connection to the wall outlet, with 360-degree rotation for tight spaces
  •    Affordable 


  •    No USB-C ports

$29 at Belkin

Charge USB-C and USB-A in your vehicle


While some rental cars have USB ports for charging up your gear on the go, you cannot always rely on them when traveling. The Anker PowerDrive Speed Plus 2 car charger is one of the best I’ve seen. It includes both USB-A and USB-C outlets, and with more USB-C cables, including ones from Apple, this connection method is becoming even more standard.

The car charger is available in black or white, and If you are a regular traveler, I highly recommend buying the white model since you will be more inclined to grab it before you return your rental car. I’ve collected a couple of car chargers over the past year, black color, since the previous renter left it behind.

Fast charging is provided via the USB-C port with standard charging from the USB-A port.


  •    USB-A and USB-C ports
  •    18-month warranty and Anker’s trusted design 
  •    Affordable


  •    The charging port end is a bit large

$37 at Amazon

Keep your phone secure in a vehicle


It is frustrating to find a place to secure your phone in a rental car, especially if you need to use it for GPS navigation. Over the past couple of years, I’ve been using various iOttie mounts and found them reliable, quick to release my devices, affordable, and built to handle the roads. We have been gifting them to new driver friends and family too.

The iOttie Easy One Touch 5 dash and windshield mount does not include any charging capability. The company does offer options for charging and mounting but has a telescoping arm to help fit into any vehicle. This is important when you travel since you never know what kind of rental vehicle you will be given until you arrive at your destination.

While the secure mount and options for mounting are great, I love the simple single-button where you simply place your phone into the holder and the one-touch button secures the side clamps to hold your phone in place. It even has a cool magnetic cord mounting clip to help you keep a clean look on your mounted phone.


  •    Easy placement into the mount and easy removal
  •    Telescopic arm to adapt to various vehicles
  •    Rock-solid mount to keep your phone secure 


  •    No vent mount option

$24 at Amazon

Out of the entire list, what is the one thing you must take with you?

Let’s assume that a smartphone is always in hand, and there is no option to leave that behind. Besides, a smartphone wasn’t listed in the list. BTW, make sure to check out our list of the 10 best smartphones.

Picking from the list above, the Mophie Powerstation Go Rugged Air Compressor is the one piece of gear that should always go with you on a trip when a car, RV, or boat (rental or personal) is involved. The powerful portable battery pack can keep all of your mobile tech and your automobile powered up while also providing essential bright lighting (red or white) during an emergency. 

In addition, you can use the air compressor to inflate floatation devices, tires (bike, car, or trailer), air mattresses, balls, and more.

What other headphones do you recommend?

Since smartphone manufacturers have removed the 3.5mm headset jack from nearly all smartphones, I’ve spent several years trying out several earbuds and headsets. You can check out our best wireless earbuds and the best noise-canceling headphones articles for a full list of options.

I personally like the earbud-form factor better than over my ears headphones and find the Apple AirPods Pro to be my second favorite, after the Sony WF-1000XM4. However, these are both expensive earbuds, costing more than $200 for a pair.

If you are looking for something more affordable, the new generation Amazon Echo Buds are half the price and offer a solid audio experience with Amazon Alexa integration.

There are a ton of bag options, why did you pick WaterField Designs?

Yes, it’s true; you can find a nearly unlimited number of various bags to carry all of your gear in with you when you travel, ranging across a large price range. WaterField Designs has been making gear bags in San Francisco for nearly 20 years, and the bags I tested 15 years ago are none the worse for wear. It’s actually stunning how well the materials, stitching, zippers, straps, and more stay together after years, or decades, of use.

Over the past couple of years, WaterField Designs has included direct user feedback through the design process of a few bags, including the hip bag and packable backpacks mentioned in the list above. The company also has a wide assortment of gear bags for all of your mobile tech so you can find exactly what you need and trust it will likely outlive your mobile gear.

There is an iPad and a Kindle in your list. Do you really still need a Kindle to read books?

It may seem at first that having an Amazon Kindle ebook reader in this list is unnecessary, given that you can read Amazon books on an iPad or smartphone. While this is true, and if I’m standing in line or waiting for a short period, I might continue reading on a tablet or phone.

However, a dedicated ebook reader is fantastic for distraction-free reading, evening reading in bed when you don’t want to wake your partner or hurt your own eyes, and enjoying a good book by the pool or on the beach. I can spend hours on my Kindle Oasis and never tire of reading while tablets and phones inevitably entice me down various rabbit holes of notifications and social-media temptations.

ZDNet Recommends

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.



Fastest VPN deal: Get lifetime protection for 10 devices for only $25



(Image: StackCommerce)

Global corporations have been ridiculously lazy in implementing the most powerful cybersecurity measures available, which puts all of our personal data at risk. That’s all the more reason to make sure your own personal security is as strong as possible, and a lifetime subscription to FastestVPN for up to 10 devices provides some of the most comprehensive protection on the market.

FastestVPN offers a smart, user-friendly service for all of your devices, including Android, iOS, Windows, Mac, your router, and even your Smart TV. It uses more than 200 high-speed servers around the world, all with military-grade 256-bit AES encryption. And you get unlimited switches between them, as well as unlimited bandwidth for the simultaneous use of your 10 devices.

An ad blocker is included for your convenience, and FastestVPN’s strict no-logging policy ensures no one will have access to your personal data. Anti-malware software is included and an extra layer of protection is provided by a NAT firewall. There is even a kill switch to disconnect you from the internet if your VPN connection drops for any reason.

While some VPNs may slow down your internet connection, as you might expect from its name, FastestVPN provides all of this protection at blazing fast speeds. You can also access any content you like, regardless of geographic restrictions. Simply access the service’s fastest server and you can download or stream even HD-quality video with absolute anonymity and zero buffering. USA Netflix support is included in your plan.

Given the depth of features, it should come as no surprise that TenBestVPNs said:

“FastestVPN is one of the most promising VPN services in the market.”

You really don’t want to pass up this opportunity to get a lifetime subscription to FastestVPN for 10 devices, because it’s currently available at the heavily discounted price of $24.99.

ZDNet Recommends

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.


Continue Reading


Brazilians spend more time on smartphones than rest of the world



Smartphone users in Brazil spend more time on their devices than any other country in the world, a new report has found.

Daily time spent on mobile apps globally jumped 45% between 2019 and 2021, according to a report published by market data company App Annie Intelligence.

On a daily basis, Brazilians used their smartphones for 5.4 hours on average in the second quarter of 2021. By comparison, daily smartphone use in Brazil reached 3.8 hours on average in 2019, and 4.8 hours daily in 2020.

Up until last year, Brazil was the second country in the world with the most intensive use of smartphones, behind Indonesia, which now ranks second with an average of 5.3 hours of smartphone use per day.

India ranked third in the research with a daily smartphone usage time of 4.9 hours on average, followed by South Korea (4,8 hours), Mexico (4,7 hours), Turkey (4,5 hours), Japan (4,4 hours), Canada (4,1 hours), United States (3,9 hours) and United Kingdom (3,8 hours).

A separate report on global trends, also by App Annie, highlighted areas of growth within the mobile app landscape. When it comes to the depth of engagement among the top social networking apps, the study noted that WhatsApp is the app Brazilians use the most, with an average of 30.3 hours per month in 2020 compared to 26.2 hours in 2019.

Notably, the use of TikTok in Brazil increased significantly, 14 hours in 2020 compared with 6.8 hours in 2019, growing faster than Facebook (15.6 hours per month versus 14 hours per month in 2019), Instagram (14 hours in 2020 versus 11.5 hours in 2019) and Twitter (6.4 hours per month in 2020 versus 5.1 hours in 2019).

According to the App Annie trends report, Brazil saw 75% year-over-year growth in downloads of finance apps in 2020. The average number of hours spent in such apps also increased by 45% last year.

Separate research by by consultancy Ebit/Nielsen in partnership with Brazilian fintech Bexs found that more than half of all online purchases in Brazil were made through smartphones since the start of the Covid-19 pandemic.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.


Continue Reading


What is AI? Here’s everything you need to know about artificial intelligence



What is artificial intelligence (AI)?

It depends who you ask.

Back in the 1950s, the fathers of the field, Minsky and McCarthy, described artificial intelligence as any task performed by a machine that would have previously been considered to require human intelligence.

That’s obviously a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not.

Modern definitions of what it means to create intelligence are more specific. Francois Chollet, an AI researcher at Google and creator of the machine-learning software library Keras, has said intelligence is tied to a system’s ability to adapt and improvise in a new environment, to generalise its knowledge and apply it to unfamiliar scenarios.

“Intelligence is the efficiency with which you acquire new skills at tasks you didn’t previously prepare for,” he said.

“Intelligence is not skill itself; it’s not what you can do; it’s how well and how efficiently you can learn new things.”

It’s a definition under which modern AI-powered systems, such as virtual assistants, would be characterised as having demonstrated ‘narrow AI’, the ability to generalise their training when carrying out a limited set of tasks, such as speech recognition or computer vision.

Typically, AI systems demonstrate at least some of the following behaviours associated with human intelligence: planning, learning, reasoning, problem-solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity.

What are the different types of AI?

At a very high level, artificial intelligence can be split into two broad types: 

Narrow AI

Narrow AI is what we see all around us in computers today — intelligent systems that have been taught or have learned how to carry out specific tasks without being explicitly programmed how to do so.

This type of machine intelligence is evident in the speech and language recognition of the Siri virtual assistant on the Apple iPhone, in the vision-recognition systems on self-driving cars, or in the recommendation engines that suggest products you might like based on what you bought in the past. Unlike humans, these systems can only learn or be taught how to do defined tasks, which is why they are called narrow AI.

General AI

General AI is very different and is the type of adaptable intellect found in humans, a flexible form of intelligence capable of learning how to carry out vastly different tasks, anything from haircutting to building spreadsheets or reasoning about a wide variety of topics based on its accumulated experience. 

This is the sort of AI more commonly seen in movies, the likes of HAL in 2001 or Skynet in The Terminator, but which doesn’t exist today – and AI experts are fiercely divided over how soon it will become a reality.

What can Narrow AI do?

There are a vast number of emerging applications for narrow AI:

  • Interpreting video feeds from drones carrying out visual inspections of infrastructure such as oil pipelines.
  • Organizing personal and business calendars.
  • Responding to simple customer-service queries.
  • Coordinating with other intelligent systems to carry out tasks like booking a hotel at a suitable time and location.
  • Helping radiologists to spot potential tumors in X-rays.
  • Flagging inappropriate content online, detecting wear and tear in elevators from data gathered by IoT devices.
  • Generating a 3D model of the world from satellite imagery… the list goes on and on.

New applications of these learning systems are emerging all the time. Graphics card designer Nvidia recently revealed an AI-based system Maxine, which allows people to make good quality video calls, almost regardless of the speed of their internet connection. The system reduces the bandwidth needed for such calls by a factor of 10 by not transmitting the full video stream over the internet and instead of animating a small number of static images of the caller in a manner designed to reproduce the callers facial expressions and movements in real-time and to be indistinguishable from the video.

However, as much untapped potential as these systems have, sometimes ambitions for the technology outstrips reality. A case in point is self-driving cars, which themselves are underpinned by AI-powered systems such as computer vision. Electric car company Tesla is lagging some way behind CEO Elon Musk’s original timeline for the car’s Autopilot system being upgraded to “full self-driving” from the system’s more limited assisted-driving capabilities, with the Full Self-Driving option only recently rolled out to a select group of expert drivers as part of a beta testing program.

What can General AI do?

A survey conducted among four groups of experts in 2012/13 by AI researchers Vincent C Müller and philosopher Nick Bostrom reported a 50% chance that Artificial General Intelligence (AGI) would be developed between 2040 and 2050, rising to 90% by 2075. The group went even further, predicting that so-called ‘superintelligence‘ – which Bostrom defines as “any intellect that greatly exceeds the cognitive performance of humans in virtually all domains of interest” — was expected some 30 years after the achievement of AGI. 

However, recent assessments by AI experts are more cautious. Pioneers in the field of modern AI research such as Geoffrey Hinton, Demis Hassabis and Yann LeCun say society is nowhere near developing AGI. Given the scepticism of leading lights in the field of modern AI and the very different nature of modern narrow AI systems to AGI, there is perhaps little basis to fears that a general artificial intelligence will disrupt society in the near future.

That said, some AI experts believe such projections are wildly optimistic given our limited understanding of the human brain and believe that AGI is still centuries away.

What are recent landmarks in the development of AI?



While modern narrow AI may be limited to performing specific tasks, within their specialisms, these systems are sometimes capable of superhuman performance, in some instances even demonstrating superior creativity, a trait often held up as intrinsically human.

There have been too many breakthroughs to put together a definitive list, but some highlights include: 

  • In 2009 Google showed its self-driving Toyota Prius could complete more than 10 journeys of 100 miles each, setting society on a path towards driverless vehicles.
  • In 2011, the computer system IBM Watson made headlines worldwide when it won the US quiz show Jeopardy!, beating two of the best players the show had ever produced. To win the show, Watson used natural language processing and analytics on vast repositories of data that is processed to answer human-posed questions, often in a fraction of a second.
  • In 2012, another breakthrough heralded AI’s potential to tackle a multitude of new tasks previously thought of as too complex for any machine. That year, the AlexNet system decisively triumphed in the ImageNet Large Scale Visual Recognition Challenge. AlexNet’s accuracy was such that it halved the error rate compared to rival systems in the image-recognition contest.

AlexNet’s performance demonstrated the power of learning systems based on neural networks, a model for machine learning that had existed for decades but that was finally realising its potential due to refinements to architecture and leaps in parallel processing power made possible by Moore’s Law. The prowess of machine-learning systems at carrying out computer vision also hit the headlines that year, with Google training a system to recognise an internet favorite: pictures of cats.

The next demonstration of the efficacy of machine-learning systems that caught the public’s attention was the 2016 triumph of the Google DeepMind AlphaGo AI over a human grandmaster in Go, an ancient Chinese game whose complexity stumped computers for decades. Go has about possible 200 moves per turn compared to about 20 in Chess. Over the course of a game of Go, there are so many possible moves that are searching through each of them in advance to identify the best play is too costly from a computational point of view. Instead, AlphaGo was trained how to play the game by taking moves played by human experts in 30 million Go games and feeding them into deep-learning neural networks.

Training these deep learning networks can take a very long time, requiring vast amounts of data to be ingested and iterated over as the system gradually refines its model in order to achieve the best outcome.

However, more recently, Google refined the training process with AlphaGo Zero, a system that played “completely random” games against itself and then learned from it. Google DeepMind CEO Demis Hassabis has also unveiled a new version of AlphaGo Zero that has mastered the games of chess and shogi.

And AI continues to sprint past new milestones: a system trained by OpenAI has defeated the world’s top players in one-on-one matches of the online multiplayer game Dota 2.

That same year, OpenAI created AI agents that invented their own language to cooperate and achieve their goal more effectively, followed by Facebook training agents to negotiate and lie.

2020 was the year in which an AI system seemingly gained the ability to write and talk like a human about almost any topic you could think of.

The system in question, known as Generative Pre-trained Transformer 3 or GPT-3 for short, is a neural network trained on billions of English language articles available on the open web.

From soon after it was made available for testing by the not-for-profit organisation OpenAI, the internet was abuzz with GPT-3’s ability to generate articles on almost any topic that was fed to it, articles that at first glance were often hard to distinguish from those written by a human. Similarly, impressive results followed in other areas, with its ability to convincingly answer questions on a broad range of topics and even pass for a novice JavaScript coder.

But while many GPT-3 generated articles had an air of verisimilitude, further testing found the sentences generated often didn’t pass muster, offering up superficially plausible but confused statements, as well as sometimes outright nonsense.

There’s still considerable interest in using the model’s natural language understanding as to the basis of future services. It is available to select developers to build into software via OpenAI’s beta API. It will also be incorporated into future services available via Microsoft’s Azure cloud platform.

Perhaps the most striking example of AI’s potential came late in 2020 when the Google attention-based neural network AlphaFold 2 demonstrated a result some have called worthy of a Nobel Prize for Chemistry.

The system’s ability to look at a protein’s building blocks, known as amino acids, and derive that protein’s 3D structure could profoundly impact the rate at which diseases are understood, and medicines are developed. In the Critical Assessment of protein Structure Prediction contest, AlphaFold 2 determined the 3D structure of a protein with an accuracy rivaling crystallography, the gold standard for convincingly modelling proteins.

Unlike crystallography, which takes months to return results, AlphaFold 2 can model proteins in hours. With the 3D structure of proteins playing such an important role in human biology and disease, such a speed-up has been heralded as a landmark breakthrough for medical science, not to mention potential applications in other areas where enzymes are used in biotech.

What is machine learning?

Practically all of the achievements mentioned so far stemmed from machine learning, a subset of AI that accounts for the vast majority of achievements in the field in recent years. When people talk about AI today, they are generally talking about machine learning. 

Currently enjoying something of a resurgence, in simple terms, machine learning is where a computer system learns how to perform a task rather than being programmed how to do so. This description of machine learning dates all the way back to 1959 when it was coined by Arthur Samuel, a pioneer of the field who developed one of the world’s first self-learning systems, the Samuel Checkers-playing Program.

To learn, these systems are fed huge amounts of data, which they then use to learn how to carry out a specific task, such as understanding speech or captioning a photograph. The quality and size of this dataset are important for building a system able to carry out its designated task accurately. For example, if you were building a machine-learning system to predict house prices, the training data should include more than just the property size, but other salient factors such as the number of bedrooms or the size of the garden.

What are neural networks?

The key to machine learning success is neural networks. These mathematical models are able to tweak internal parameters to change what they output. A neural network is fed datasets that teach it what it should spit out when presented with certain data during training. In concrete terms, the network might be fed greyscale images of the numbers between zero and 9, alongside a string of binary digits — zeroes and ones — that indicate which number is shown in each greyscale image. The network would then be trained, adjusting its internal parameters until it classifies the number shown in each image with a high degree of accuracy. This trained neural network could then be used to classify other greyscale images of numbers between zero and 9. Such a network was used in a seminal paper showing the application of neural networks published by Yann LeCun in 1989 and has been used by the US Postal Service to recognise handwritten zip codes.

The structure and functioning of neural networks are very loosely based on the connections between neurons in the brain. Neural networks are made up of interconnected layers of algorithms that feed data into each other. They can be trained to carry out specific tasks by modifying the importance attributed to data as it passes between these layers. During the training of these neural networks, the weights attached to data as it passes between layers will continue to be varied until the output from the neural network is very close to what is desired. At that point, the network will have ‘learned’ how to carry out a particular task. The desired output could be anything from correctly labelling fruit in an image to predicting when an elevator might fail based on its sensor data.

A subset of machine learning is deep learning, where neural networks are expanded into sprawling networks with a large number of sizeable layers that are trained using massive amounts of data. These deep neural networks have fuelled the current leap forward in the ability of computers to carry out tasks like speech recognition and computer vision.

There are various types of neural networks with different strengths and weaknesses. Recurrent Neural Networks (RNN) are a type of neural net particularly well suited to Natural Language Processing (NLP) — understanding the meaning of text — and speech recognition, while convolutional neural networks have their roots in image recognition and have uses as diverse as recommender systems and NLP. The design of neural networks is also evolving, with researchers refining a more effective form of deep neural network called long short-term memory or LSTM — a type of RNN architecture used for tasks such as NLP and for stock market predictions – allowing it to operate fast enough to be used in on-demand systems like Google Translate. 


The structure and training of deep neural networks.

Image: Nuance

What are other types of AI?

Another area of AI research is evolutionary computation.

It borrows from Darwin’s theory of natural selection. It sees genetic algorithms undergo random mutations and combinations between generations in an attempt to evolve the optimal solution to a given problem.

This approach has even been used to help design AI models, effectively using AI to help build AI. This use of evolutionary algorithms to optimize neural networks is called neuroevolution. It could have an important role to play in helping design efficient AI as the use of intelligent systems becomes more prevalent, particularly as demand for data scientists often outstrips supply. The technique was showcased by Uber AI Labs, which released papers on using genetic algorithms to train deep neural networks for reinforcement learning problems.

Finally, there are expert systems, where computers are programmed with rules that allow them to take a series of decisions based on a large number of inputs, allowing that machine to mimic the behaviour of a human expert in a specific domain. An example of these knowledge-based systems might be, for example, an autopilot system flying a plane.

What is fueling the resurgence in AI?

As outlined above, the biggest breakthroughs for AI research in recent years have been in the field of machine learning, in particular within the field of deep learning.

This has been driven in part by the easy availability of data, but even more so by an explosion in parallel computing power, during which time the use of clusters of graphics processing units (GPUs) to train machine-learning systems has become more prevalent. 

Not only do these clusters offer vastly more powerful systems for training machine-learning models, but they are now widely available as cloud services over the internet. Over time the major tech firms, the likes of Google, Microsoft, and Tesla, have moved to using specialised chips tailored to both running, and more recently, training, machine-learning models.

An example of one of these custom chips is Google’s Tensor Processing Unit (TPU), the latest version of which accelerates the rate at which useful machine-learning models built using Google’s TensorFlow software library can infer information from data, as well as the rate at which they can be trained.

These chips are used to train up models for DeepMind and Google Brain and the models that underpin Google Translate and the image recognition in Google Photos and services that allow the public to build machine-learning models using Google’s TensorFlow Research Cloud. The third generation of these chips was unveiled at Google’s I/O conference in May 2018 and have since been packaged into machine-learning powerhouses called pods that can carry out more than one hundred thousand trillion floating-point operations per second (100 petaflops). These ongoing TPU upgrades have allowed Google to improve its services built on top of machine-learning models, for instance, halving the time taken to train models used in Google Translate.

What are the elements of machine learning?

As mentioned, machine learning is a subset of AI and is generally split into two main categories: supervised and unsupervised learning.

Supervised learning

A common technique for teaching AI systems is by training them using many labelled examples. These machine-learning systems are fed huge amounts of data, which has been annotated to highlight the features of interest. These might be photos labelled to indicate whether they contain a dog or written sentences that have footnotes to indicate whether the word ‘bass’ relates to music or a fish. Once trained, the system can then apply these labels to new data, for example, to a dog in a photo that’s just been uploaded.

This process of teaching a machine by example is called supervised learning. Labelling these examples is commonly carried out by online workers employed through platforms like Amazon Mechanical Turk.

Training these systems typically requires vast amounts of data, with some systems needing to scour millions of examples to learn how to carry out a task effectively –although this is increasingly possible in an age of big data and widespread data mining. Training datasets are huge and growing in size — Google’s Open Images Dataset has about nine million images, while its labelled video repository YouTube-8M links to seven million labelled videos. ImageNet, one of the early databases of this kind, has more than 14 million categorized images. Compiled over two years, it was put together by nearly 50 000 people — most of whom were recruited through Amazon Mechanical Turk — who checked, sorted, and labelled almost one billion candidate pictures. 

Having access to huge labelled datasets may also prove less important than access to large amounts of computing power in the long run.

In recent years, Generative Adversarial Networks (GANs) have been used in machine-learning systems that only require a small amount of labelled data alongside a large amount of unlabelled data, which, as the name suggests, requires less manual work to prepare.

This approach could allow for the increased use of semi-supervised learning, where systems can learn how to carry out tasks using a far smaller amount of labelled data than is necessary for training systems using supervised learning today.

Unsupervised learning

In contrast, unsupervised learning uses a different approach, where algorithms try to identify patterns in data, looking for similarities that can be used to categorise that data.

An example might be clustering together fruits that weigh a similar amount or cars with a similar engine size.

The algorithm isn’t set up in advance to pick out specific types of data; it simply looks for data that its similarities can group, for example, Google News grouping together stories on similar topics each day.

Reinforcement learning

A crude analogy for reinforcement learning is rewarding a pet with a treat when it performs a trick. In reinforcement learning, the system attempts to maximise a reward based on its input data, basically going through a process of trial and error until it arrives at the best possible outcome.

An example of reinforcement learning is Google DeepMind’s Deep Q-network, which has been used to best human performance in a variety of classic video games. The system is fed pixels from each game and determines various information, such as the distance between objects on the screen.

By also looking at the score achieved in each game, the system builds a model of which action will maximise the score in different circumstances, for instance, in the case of the video game Breakout, where the paddle should be moved to in order to intercept the ball.

The approach is also used in robotics research, where reinforcement learning can help teach autonomous robots the optimal way to behave in real-world environments.


Many AI-related technologies are approaching, or have already reached, the “peak of inflated expectations” in Gartner’s Hype Cycle, with the backlash-driven ‘trough of disillusionment’ lying in wait.

Image: Gartner / Annotations: ZDNet

Which are the leading firms in AI?

With AI playing an increasingly major role in modern software and services, each major tech firm is battling to develop robust machine-learning technology for use in-house and to sell to the public via cloud services.

Each regularly makes headlines for breaking new ground in AI research, although it is probably Google with its DeepMind AI AlphaFold and AlphaGo systems that have probably made the biggest impact on the public awareness of AI.

Which AI services are available?

All of the major cloud platforms — Amazon Web Services, Microsoft Azure and Google Cloud Platform — provide access to GPU arrays for training and running machine-learning models, with Google also gearing up to let users use its Tensor Processing Units — custom chips whose design is optimized for training and running machine-learning models.

All of the necessary associated infrastructure and services are available from the big three, the cloud-based data stores, capable of holding the vast amount of data needed to train machine-learning models, services to transform data to prepare it for analysis, visualisation tools to display the results clearly, and software that simplifies the building of models.

These cloud platforms are even simplifying the creation of custom machine-learning models, with Google offering a service that automates the creation of AI models, called Cloud AutoML. This drag-and-drop service builds custom image-recognition models and requires the user to have no machine-learning expertise.

Cloud-based, machine-learning services are constantly evolving. Amazon now offers a host of AWS offerings designed to streamline the process of training up machine-learning models and recently launched Amazon SageMaker Clarify, a tool to help organizations root out biases and imbalances in training data that could lead to skewed predictions by the trained model.

For those firms that don’t want to build their own machine=learning models but instead want to consume AI-powered, on-demand services, such as voice, vision, and language recognition, Microsoft Azure stands out for the breadth of services on offer, closely followed by Google Cloud Platform and then AWS. Meanwhile, IBM, alongside its more general on-demand offerings, is also attempting to sell sector-specific AI services aimed at everything from healthcare to retail, grouping these offerings together under its IBM Watson umbrella, and having invested $2bn in buying The Weather Channel to unlock a trove of data to augment its AI services.

Which of the major tech firms is winning the AI race?


Image: Jason Cipriani/ZDNet

Internally, each tech giant and others such as Facebook use AI to help drive myriad public services: serving search results, offering recommendations, recognizing people and things in photos, on-demand translation, spotting spam — the list is extensive.

But one of the most visible manifestations of this AI war has been the rise of virtual assistants, such as Apple’s Siri, Amazon’s Alexa, the Google Assistant, and Microsoft Cortana.

Relying heavily on voice recognition and natural-language processing and needing an immense corpus to draw upon to answer queries, a huge amount of tech goes into developing these assistants.

But while Apple’s Siri may have come to prominence first, it is Google and Amazon whose assistants have since overtaken Apple in the AI space — Google Assistant with its ability to answer a wide range of queries and Amazon’s Alexa with the massive number of ‘Skills’ that third-party devs have created to add to its capabilities.

Over time, these assistants are gaining abilities that make them more responsive and better able to handle the types of questions people ask in regular conversations. For example, Google Assistant now offers a feature called Continued Conversation, where a user can ask follow-up questions to their initial query, such as ‘What’s the weather like today?’, followed by ‘What about tomorrow?’ and the system understands the follow-up question also relates to the weather.

These assistants and associated services can also handle far more than just speech, with the latest incarnation of the Google Lens able to translate text into images and allow you to search for clothes or furniture using photos.

Despite being built into Windows 10, Cortana has had a particularly rough time of late, with Amazon’s Alexa now available for free on Windows 10 PCs. At the same time, Microsoft revamped Cortana’s role in the operating system to focus more on productivity tasks, such as managing the user’s schedule, rather than more consumer-focused features found in other assistants, such as playing music.  

Which countries are leading the way in AI?

It’d be a big mistake to think the US tech giants have the field of AI sewn up. Chinese firms Alibaba, Baidu, and Lenovo, invest heavily in AI in fields ranging from e-commerce to autonomous driving. As a country, China is pursuing a three-step plan to turn AI into a core industry for the country, one that will be worth 150 billion yuan ($22bn) by the end of 2020 to become the world’s leading AI power by 2030.

Baidu has invested in developing self-driving cars, powered by its deep-learning algorithm, Baidu AutoBrain. After several years of tests, with its Apollo self-driving car having racked up more than three million miles of driving in tests, it carried over 100 000 passengers in 27 cities worldwide.

Baidu launched a fleet of 40 Apollo Go Robotaxis in Beijing this year. The company’s founder has predicted that self-driving vehicles will be common in China’s cities within five years. 

The combination of weak privacy laws, huge investment, concerted data-gathering, and big data analytics by major firms like Baidu, Alibaba, and Tencent, means that some analysts believe China will have an advantage over the US when it comes to future AI research, with one analyst describing the chances of China taking the lead over the US as 500 to 1 in China’s favor.


Baidu’s self-driving car, a modified BMW 3 series.

Image: Baidu

How can I get started with AI?

While you could buy a moderately powerful Nvidia GPU for your PC — somewhere around the Nvidia GeForce RTX 2060 or faster — and start training a machine-learning model, probably the easiest way to experiment with AI-related services is via the cloud.

All of the major tech firms offer various AI services, from the infrastructure to build and train your own machine-learning models through to web services that allow you to access AI-powered tools such as speech, language, vision and sentiment recognition on-demand.

How will AI change the world?

Robots and driverless cars

The desire for robots to be able to act autonomously and understand and navigate the world around them means there is a natural overlap between robotics and AI. While AI is only one of the technologies used in robotics, AI is helping robots move into new areas such as self-driving carsdelivery robots and helping robots learn new skills. At the start of 2020, General Motors and Honda revealed the Cruise Origin, an electric-powered driverless car and Waymo, the self-driving group inside Google parent Alphabet, recently opened its robotaxi service to the general public in Phoenix, Arizona, offering a service covering a 50-square mile area in the city.

Fake news

We are on the verge of having neural networks that can create photo-realistic images or replicate someone’s voice in a pitch-perfect fashion. With that comes the potential for hugely disruptive social change, such as no longer being able to trust video or audio footage as genuine. Concerns are also starting to be raised about how such technologies will be used to misappropriate people’s images, with tools already being created to splice famous faces into adult films convincingly.

Speech and language recognition

Machine-learning systems have helped computers recognise what people are saying with an accuracy of almost 95%. Microsoft’s Artificial Intelligence and Research group also reported it had developed a system that transcribes spoken English as accurately as human transcribers.

With researchers pursuing a goal of 99% accuracy, expect speaking to computers to become increasingly common alongside more traditional forms of human-machine interaction.

Meanwhile, OpenAI’s language prediction model GPT-3 recently caused a stir with its ability to create articles that could pass as being written by a human.

Facial recognition and surveillance

In recent years, the accuracy of facial recognition systems has leapt forward, to the point where Chinese tech giant Baidu says it can match faces with 99% accuracy, providing the face is clear enough on the video. While police forces in western countries have generally only trialled using facial-recognition systems at large events, in China, the authorities are mounting a nationwide program to connect CCTV across the country to facial recognition and to use AI systems to track suspects and suspicious behavior, and has also expanded the use of facial-recognition glasses by police.

Although privacy regulations vary globally, it’s likely this more intrusive use of AI technology — including AI that can recognize emotions — will gradually become more widespread. However, a growing backlash and questions about the fairness of facial recognition systems have led to Amazon, IBM and Microsoft pausing or halting the sale of these systems to law enforcement.


AI could eventually have a dramatic impact on healthcare, helping radiologists to pick out tumors in x-rays, aiding researchers in spotting genetic sequences related to diseases and identifying molecules that could lead to more effective drugs. The recent breakthrough by Google’s AlphaFold 2 machine-learning system is expected to reduce the time taken during a key step when developing new drugs from months to hours.

There have been trials of AI-related technology in hospitals across the world. These include IBM’s Watson clinical decision support tool, which oncologists train at Memorial Sloan Kettering Cancer Center, and the use of Google DeepMind systems by the UK’s National Health Service, where it will help spot eye abnormalities and streamline the process of screening patients for head and neck cancers.

Reinforcing discrimination and bias 

A growing concern is the way that machine-learning systems can codify the human biases and societal inequities reflected in their training data. These fears have been borne out by multiple examples of how a lack of variety in the data used to train such systems has negative real-world consequences. 

In 2018, an MIT and Microsoft research paper found that facial recognition systems sold by major tech companies suffered from error rates that were significantly higher when identifying people with darker skin, an issue attributed to training datasets being composed mainly of white men.

Another study a year later highlighted that Amazon’s Rekognition facial recognition system had issues identifying the gender of individuals with darker skin, a charge that was challenged by Amazon executives, prompting one of the researchers to address the points raised in the Amazon rebuttal.

Since the studies were published, many of the major tech companies have, at least temporarily, ceased selling facial recognition systems to police departments.

Another example of insufficiently varied training data skewing outcomes made headlines in 2018 when Amazon scrapped a machine-learning recruitment tool that identified male applicants as preferable. Today research is ongoing into ways to offset biases in self-learning systems.

AI and global warming

As the size of machine-learning models and the datasets used to train them grows, so does the carbon footprint of the vast compute clusters that shape and run these models. The environmental impact of powering and cooling these compute farms was the subject of a paper by the World Economic Forum in 2018. One 2019 estimate was that the power required by machine-learning systems is doubling every 3.4 months.

The issue of the vast amount of energy needed to train powerful machine-learning models was brought into focus recently by the release of the language prediction model GPT-3, a sprawling neural network with some 175 billion parameters. 

While the resources needed to train such models can be immense, and largely only available to major corporations, once trained the energy needed to run these models is significantly less. However, as demand for services based on these models grows, power consumption and the resulting environmental impact again becomes an issue.

One argument is that the environmental impact of training and running larger models needs to be weighed against the potential machine learning has to have a significant positive impact, for example, the more rapid advances in healthcare that look likely following the breakthrough made by Google DeepMind’s AlphaFold 2.

Will AI kill us all?

Again, it depends on who you ask. As AI-powered systems have grown more capable, so warnings of the downsides have become more dire.

Tesla and SpaceX CEO Elon Musk has claimed that AI is a “fundamental risk to the existence of human civilization”. As part of his push for stronger regulatory oversight and more responsible research into mitigating the downsides of AI, he set up OpenAI, a non-profit artificial intelligence research company that aims to promote and develop friendly AI that will benefit society as a whole. Similarly, the esteemed physicist Stephen Hawking warned that once a sufficiently advanced AI is created, it will rapidly advance to the point at which it vastly outstrips human capabilities. A phenomenon is known as a singularity and could pose an existential threat to the human race.

Yet, the notion that humanity is on the verge of an AI explosion that will dwarf our intellect seems ludicrous to some AI researchers.

Chris Bishop, Microsoft’s director of research in Cambridge, England, stresses how different the narrow intelligence of AI today is from the general intelligence of humans, saying that when people worry about “Terminator and the rise of the machines and so on? Utter nonsense, yes. At best, such discussions are decades away.”

Will an AI steal your job?



The possibility of artificially intelligent systems replacing much of modern manual labour is perhaps a more credible near-future possibility.

While AI won’t replace all jobs, what seems to be certain is that AI will change the nature of work, with the only question being how rapidly and how profoundly automation will alter the workplace.

There is barely a field of human endeavour that AI doesn’t have the potential to impact. As AI expert Andrew Ng puts it: “many people are doing routine, repetitive jobs. Unfortunately, technology is especially good at automating routine, repetitive work”, saying he sees a “significant risk of technological unemployment over the next few decades”.

The evidence of which jobs will be supplanted is starting to emerge. There are now 27 Amazon Go stores and cashier-free supermarkets where customers just take items from the shelves and walk out in the US. What this means for the more than three million people in the US who work as cashiers remains to be seen. Amazon again is leading the way in using robots to improve efficiency inside its warehouses. These robots carry shelves of products to human pickers who select items to be sent out. Amazon has more than 200 000 bots in its fulfilment centers, with plans to add more. But Amazon also stresses that as the number of bots has grown, so has the number of human workers in these warehouses. However, Amazon and small robotics firms are working on automating the remaining manual jobs in the warehouse, so it’s not a given that manual and robotic labor will continue to grow hand-in-hand.

Fully autonomous self-driving vehicles aren’t a reality yet, but by some predictions, the self-driving trucking industry alone is poised to take over 1.7 million jobs in the next decade, even without considering the impact on couriers and taxi drivers.

Yet, some of the easiest jobs to automate won’t even require robotics. At present, there are millions of people working in administration, entering and copying data between systems, chasing and booking appointments for companies as software gets better at automatically updating systems and flagging the important information, so the need for administrators will fall.

As with every technological shift, new jobs will be created to replace those lost. However, what’s uncertain is whether these new roles will be created rapidly enough to offer employment to those displaced and whether the newly unemployed will have the necessary skills or temperament to fill these emerging roles.

Not everyone is a pessimist. For some, AI is a technology that will augment rather than replace workers. Not only that, but they argue there will be a commercial imperative to not replace people outright, as an AI-assisted worker — think a human concierge with an AR headset that tells them exactly what a client wants before they ask for it — will be more productive or effective than an AI working on its own.

There’s a broad range of opinions about how quickly artificially intelligent systems will surpass human capabilities among AI experts.

Oxford University’s Future of Humanity Institute asked several hundred machine-learning experts to predict AI capabilities over the coming decades.

Notable dates included AI writing essays that could pass for being written by a human by 2026, truck drivers being made redundant by 2027, AI surpassing human capabilities in retail by 2031, writing a best-seller by 2049, and doing a surgeon’s work by 2053.

They estimated there was a relatively high chance that AI beats humans at all tasks within 45 years and automates all human jobs within 120 years.

See More:

IBM adds Watson tools for reading comprehension, FAQ extraction.

Related coverage

How ML and AI will transform business intelligence and analytics
Machine learning and artificial intelligence advances in five areas will ease data prep, discovery, analysis, prediction, and data-driven decision making.

Report: Artificial intelligence is creating jobs, generating economic gains
A new study from Deloitte shows that early adopters of cognitive technologies are positive about their current and future roles.

AI and jobs: Where humans are better than algorithms, and vice versa
It’s easy to get caught up in the doom-and-gloom predictions about artificial intelligence wiping out millions of jobs. Here’s a reality check.

How artificial intelligence is unleashing a new type of cybercrime (TechRepublic)
Rather than hiding behind a mask to rob a bank, criminals are now hiding behind artificial intelligence to make their attack. However, financial institutions can use AI as well to combat these crimes.

Elon Musk: Artificial intelligence may spark World War III (CNET)
The serial CEO is already fighting the science fiction battles of tomorrow, and he remains more concerned about killer robots than anything else.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.


Continue Reading


Even after Emotet takedown, Office docs deliver 43% of all malware downloads now



Malware delivered over the cloud increased by 68% in Q2, according to data from cybersecurity firm Netskope.

ZDNet Recommends

The company released the fifth edition of its Cloud and Threat Report that covers the cloud data risks, threats and trends they see throughout the quarter. 

The report noted that cloud storage apps account for more than 66% of cloud malware delivery.

“In Q2 2021, 43% of all malware downloads were malicious Office docs, compared to just 20% at the beginning of 2020. This increase comes even after the Emotet takedown, indicating that other groups observed the success of the Emotet crew and have adopted similar techniques,” the report said. 

“Collaboration apps and development tools account for the next largest percentage, as attackers abuse popular chat apps and code repositories to deliver malware. In total, Netskope detected and blocked malware downloads originating from 290 distinct cloud apps in the first half of 2021.”


The researchers behind the report explained that cybercriminals deliver malware through cloud apps “to bypass blocklists and take advantage of any app-specific allow lists.” Cloud service providers generally remove most malware immediately, but some attackers have found ways to do significant damage in the short time they spend undetected in a system. 

According to the company’s researchers, about 35% of all workloads are also exposed to the public internet within AWS, Azure, and GCP, with public IP addresses that are reachable from anywhere on the internet.

RDP servers — which they say have become “a popular infiltration vector for attackers” — were exposed in 8.3% of workloads. The average company with anywhere between 500 and 2000 employees now deploys 805 distinct apps and cloud services, with 97% of those being “unmanaged and often freely adopted by business units and users.”

The rapid adoption of enterprise cloud apps has continued into 2021, with data showing adoption is up 22% for the first half of the year. But, the report notes that “97% of cloud apps used in the enterprise are shadowing IT, unmanaged and often freely adopted by business units and users.”

There are also issues raised in the report about employee habits, both at the workplace and at home. The report raises concerns about the nearly universal trend of employees authorizing at least one third-party app in Google Workspace

Netskope’s report says employees leaving an organization upload three times more data to their personal apps in the final 30 days of employment. 

The uploads are leaving company data exposed because much of it is uploaded to personal Google Drive and Microsoft OneDrive, which are popular targets for cyberattackers. According to Netskope’s findings, 15% “either upload files that were copied directly from managed app instances or that violate a corporate data policy.”

The researchers also add that remote work is still in full swing as of the end of June 2021, with 70% of users surveyed still working remotely. 

“At the beginning of the pandemic, when users began working from home, we saw a spike in users visiting risky websites, including adult content, file sharing, and piracy websites,” the report added. 

“Over time, this risky web surfing subsided as users presumably became more accustomed to working from home, and IT teams were able to coach users on acceptable use policies.”

The report touts the decline in risky browsing but also highlights the “growing danger of malicious Office documents” and cloud configurations as particularly thorny problems. 

Joseph Carson, chief security scientist and advisory CISO at ThycoticCentrify, said the change to a hybrid work environment last year meant that cybersecurity needed to evolve from being perimeter and network-based to one that is focused on cloud, identity and privileged access management.  

“Organizations must continue to adapt and prioritize managing and securing access to the business applications and data, such as that similar to the BYOD types of devices, and that means further segregation networks for untrusted devices but secured with strong privileged access security controls to enable productivity and access,” Carson said. 

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.


Continue Reading
Esports4 days ago

How to reduce lag and increase FPS in Pokémon Unite

Esports5 days ago

Coven skins for Ashe, Evelynn, Ahri, Malphite, Warwick, Cassiopeia revealed for League of Legends

Esports4 days ago

Will New World closed beta progress carry over to the game’s full release?

Esports4 days ago

How to add friends and party up in New World

Esports4 days ago

Can you sprint in New World?

Esports4 days ago

How to claim New World Twitch drops

Esports4 days ago

Twitch streamer gets banned in New World after milking cow

AR/VR4 days ago

Moth+Flame partners with US Air Force to launch Virtual Reality sexual assault prevention and response training

Blockchain5 days ago

Uniswap (UNI) and AAVE Technical Analysis: What to Expect?

Esports4 days ago

Konami unveils Yu-Gi-Oh! Master Duel, a digital version of the Yu-Gi-Oh! TCG and OCG formats

Blockchain5 days ago

Rothschild Investment Purchases Grayscale Bitcoin and Ethereum Trusts Shares

Esports4 days ago

How to change or join a new world in New World

Esports4 days ago

Best Akshan builds in League of Legends

Esports4 days ago

Team BDS adds GatsH to VALORANT roster as sixth man before EU Stage 3 Challengers 2

Esports4 days ago

Overwatch League 2021 Grand Finals to be held in Los Angeles, playoff bracket in Dallas

Esports4 days ago

Here are all the servers in the New World closed beta

Esports4 days ago

How to turn off and on PvP in New World

Blockchain5 days ago

NexWEB Technologies Chooses Butterfly Protocol for Powering its Blockchain Domain-Based NFT Platform

Gaming4 days ago

Why Is It Better to Play Slots Using Cryptocurrency?

Blockchain5 days ago

WiV Signs Agreement with Georgian Government To Develop Georgian Wine’s Global Presence And Quality Assurance