Zephyrnet Logo

Analyzing and understanding the robustness of bioprocesses

Date:

    • Kazmer D.
    • Roser C.

    Evaluation of product and process design robustness.

    Res. Eng. Des. 1999; 11: 20-30

    • Giannetti C.

    A framework for improving process robustness with quantification of uncertainties in Industry 4.0.

    in: Jędrzejowicz P. 2017 IEEE International Conference on Innovations In Intelligent Systems and Applications (INISTA). IEEE, 2017: 189-194

    • Whitford W.
    • Julien C.

    Appendix 1: designing for process robustness.

    BioProcess Int. 2008; 6: 3

    • ICH European Medicines Agency

    Q8 (R2) Step 5 Pharmaceutical Development.

    EMA, 2014

    • Cooney B.
    • et al.

    Quality by design for monoclonal antibodies, Part 2: process design space and control strategies.

    BioProcess Int. 2016; 14: 8

    • Delvigne F.
    • et al.

    Taking control over microbial populations: current approaches for exploiting biological noise in bioprocesses.

    Biotechnol. J. 2017; 121600549

    • Smiatek J.
    • et al.

    Towards a digital bioprocess eplica: computational approaches in biopharmaceutical development and manufacturing.

    Trends Biotechnol. 2020; 38: 1141-1153

    • Ploch T.
    • et al.

    Multiscale dynamic modeling and simulation of a biorefinery.

    Biotechnol. Bioeng. 2019; 116: 2561-2574

    • Olsson L.
    • et al.

    Robustness: linking strain design to viable bioprocesses.

    Trends Biotechnol. 2022; 40: 918-931

    • Nadal-Rey G.
    • et al.

    Understanding gradients in industrial bioreactors.

    Biotechnol. Adv. 2021; 46107660

  • Bioprocess modelling for the design and optimization of lignocellulosic biomass fermentation.

    Bioresour. Bioprocess. 2016; 3: 1-9

    • Cunha J.T.
    • et al.

    Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions.

    Appl. Microbiol. Biotechnol. 2019; 103: 159-175

    • Yao D.
    • et al.

    Robustness of Clostridium saccharoperbutylacetonicum for acetone-butanol-ethanol production: effects of lignocellulosic sugars and inhibitors.

    Fuel. 2017; 208: 549-557

    • Moreno A.D.
    • et al.

    Evolutionary engineered Candida intermedia exhibits improved xylose utilization and robustness to lignocellulose-derived inhibitors and ethanol.

    Appl. Microbiol. Biotechnol. 2019; 103: 1405-1416

    • Keskin T.
    • et al.

    Determining the effect of trace elements on biohydrogen production from fruit and vegetable wastes.

    Int. J. Hydrog. Energy. 2018; 43: 10666-10677

    • McGillicuddy N.
    • et al.

    Examining the sources of variability in cell culture media used for biopharmaceutical production.

    Biotechnol. Lett. 2018; 40: 5-21

    • Ritacco F.V.
    • et al.

    Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies.

    Biotechnol. Prog. 2018; 34: 1407-1426

    • Faghihzadeh F.
    • et al.

    Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles.

    Nanotechnol. Environ. Eng. 2016; 1: 1

    • Brunner M.
    • et al.

    Towards robust cell culture processes – unraveling the impact of media preparation by spectroscopic online monitoring.

    Eng. Life Sci. 2019; 19: 666-680

    • Dickens J.
    • et al.

    Biopharmaceutical raw material variation and control.

    Curr. Opin. Chem. Eng. 2018; 22: 236-243

    • Zhang K.
    • et al.

    Chromatographic separation of hemoglobin variants using robust molecularly imprinted polymers.

    Talanta. 2019; 199: 27-31

    • Wehrs M.
    • et al.

    Engineering robust production microbes for large-scale cultivation.

    Trends Microbiol. 2019; 27: 524-537

    • Limberg M.H.
    • et al.

    pH fluctuations imperil the robustness of C. glutamicum to short term oxygen limitation.

    J. Biotechnol. 2017; 259: 248-260

    • Rao C.V.
    • et al.

    Control, exploitation and tolerance of intracellular noise.

    Nature. 2002; 420: 231-237

    • Dunyashev T.P.
    • et al.

    Identification of genes associated with the synthesis of siderophores by the Bacillus subtilis.

    J. Livest. Sci. 2021; 12: 287

    • Heins A.-L.
    • Weuster-Botz D.

    Population heterogeneity in microbial bioprocesses: origin, analysis, mechanisms, and future perspectives.

    Bioprocess Biosyst. Eng. 2018; 41: 889-916

    • Fernández-Cabezón L.
    • et al.

    Evolutionary approaches for engineering industrially relevant phenotypes in bacterial cell factories.

    Biotechnol. J. 2019; 14e1800439

    • Trovão M.
    • et al.

    Random mutagenesis as a promising tool for microalgal strain improvement towards industrial production.

    Mar. Drugs. 2022; 20: 440

    • Schroeder J.W.
    • et al.

    Sources of spontaneous mutagenesis in bacteria.

    Crit. Rev. Biochem. Mol. Biol. 2018; 53: 29-48

    • Jee J.
    • et al.

    Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing.

    Nature. 2016; 534: 693-696

    • Mans R.
    • et al.

    Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production.

    Curr. Opin. Biotechnol. 2018; 50: 47-56

    • Rodríguez-Beltrán J.
    • et al.

    Beyond horizontal gene transfer: the role of plasmids in bacterial evolution.

    Nat. Rev. Microbiol. 2021; 19: 347-359

    • Hengsbach J.-N.
    • et al.

    Microbial electrosynthesis of methane and acetate-comparison of pure and mixed cultures.

    Appl. Microbiol. Biotechnol. 2022; 106: 4427-4443

    • Mairet F.
    • Bernard O.

    Robustness of bioprocess feedback control to biodiversity.

    AICHE J. 2017; 63: 2742-2750

    • Marcos N.I.
    • et al.

    Adaptive extremum-seeking control of a continuous stirred tank bioreactor with Haldane’s Kinetics.

    J. Process Control. 2004; 14: 317-328

    • Ladner T.
    • et al.

    Application of mini- and micro-bioreactors for microbial bioprocesses.

    in: Larroche C. Current Developments in Biotechnology and Bioengineering. Bioprocesses, Bioreactors and Controls. Elsevier, 2016: 433-461

    • Hartmann F.S.F.
    • et al.

    Digital models in biotechnology: towards multi-scale integration and implementation.

    Biotechnol. Adv. 2022; 60108015

    • Gargalo C.L.
    • et al.

    Towards smart biomanufacturing: a perspective on recent developments in industrial measurement and monitoring technologies for bio-based production processes.

    J. Ind. Microbiol. Biotechnol. 2020; 47: 947-964

    • Carlson R.

    Design of Experiments, Principles and Applications.

    J. Chemom. 2001; 15: 495-496

    • Soravia S.
    • Orth A.

    Design of experiments.

    in: Ley C. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co., 2006 ()

    • Simonoska Crcarevska M.
    • et al.

    Implementation of quality by design principles in the development of microsponges as drug delivery carriers: identification and optimization of critical factors using multivariate statistical analyses and design of experiments studies.

    Int. J. Pharm. 2015; 489: 58-72

    • Radivojević T.
    • et al.

    A machine learning Automated Recommendation Tool for synthetic biology.

    Nat. Commun. 2020; 11: 4879

    • Gu C.
    • et al.

    Current status and applications of genome-scale metabolic models.

    Genome Biol. 2019; 20: 121

    • Zhang J.
    • et al.

    Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism.

    Nat. Commun. 2020; 11: 4880

    • Wehrs M.
    • et al.

    You get what you screen for: on the value of fermentation characterization in high-throughput strain improvements in industrial settings.

    J. Ind. Microbiol. Biotechnol. 2020; 47: 913-927

    • Ho P.
    • et al.

    Microfluidic reproduction of dynamic bioreactor environment based on computational lifelines.

    Front. Chem. Eng. 2022; 4826485

    • Bisgaard J.
    • et al.

    Characterization of mixing performance in bioreactors using flow-following sensor devices.

    Chem. Eng. Res. Des. 2021; 174: 471-485

    • Amruthnath N.
    • Gupta T.

    A research study on unsupervised machine learning algorithms for early fault detection in predictive maintenance.

    in: Proceedings of the 5th International Conference on Industrial Engineering and Applications (ICIEA), Singapore, 26-28 April 2018. IEEE, 2018: 355-361

    • Udugama I.A.
    • et al.

    Towards digitalization in bio-manufacturing operations: a survey on application of Big Data and Digital Twin concepts in Denmark.

    Front. Chem. Eng. 2021; 3727152

    • Narayanan H.
    • et al.

    Bioprocessing in the digital age: the role of process models.

    Biotechnol. J. 2020; 15e1900172

    • Zhang D.
    • et al.

    Hybrid physics-based and data-driven modeling for bioprocess online simulation and optimization.

    Biotechnol. Bioeng. 2019; 116: 2919-2930

    • Tiwari A.
    • et al.

    Use of HPLC as an enabler of process analytical technology in process chromatography.

    Anal. Chem. 2018; 90: 7824-7829

    • Roch P.
    • Mandenius C.-F.

    On-line monitoring of downstream bioprocesses.

    Curr. Opin. Chem. Eng. 2016; 14: 112-120

    • Capito F.
    • et al.

    At-line mid infrared spectroscopy for monitoring downstream processing unit operations.

    Process Biochem. 2015; 50: 997-1005

    • Steinebach F.
    • et al.

    Continuous counter-current chromatography for capture and polishing steps in biopharmaceutical production.

    Biotechnol. J. 2016; 11: 1126-1141

    • Zydney A.L.

    Continuous downstream processing for high value biological products: a review.

    Biotechnol. Bioeng. 2016; 113: 465-475

    • Dutta A.K.
    • et al.

    Continuous countercurrent tangential chromatography for mixed mode post-capture operations in monoclonal antibody purification.

    J. Chromatogr. A. 2017; 1511: 37-44

    • Rathore A.S.
    • et al.

    Recent developments in chromatographic purification of biopharmaceuticals.

    Biotechnol. Lett. 2018; 40: 895-905

    • Schmidt A.
    • Strube J.

    Distinct and quantitative validation method for predictive process modeling with examples of liquid-liquid extraction processes of complex feed mixtures.

    Processes. 2019; 7: 298

    • Pekarsky A.
    • et al.

    The impact of technical failures on recombinant production of soluble proteins in Escherichia coli: a case study on process and protein robustness.

    Bioprocess Biosyst. Eng. 2021; 44: 1049-1061

    • Aulitto M.
    • et al.

    Bacillus coagulans MA-13: a promising thermophilic and cellulolytic strain for the production of lactic acid from lignocellulosic hydrolysate.

    Biotechnol. Biofuels. 2017; 10: 210

    • Zainab-L I.
    • Sudesh K.

    High cell density culture of Cupriavidus necator H16 and improved biological recovery of polyhydroxyalkanoates using mealworms.

    J. Biotechnol. 2019; 305: 35-42

    • Liao Z.
    • et al.

    Improving cellular robustness and butanol titers of Clostridium acetobutylicum ATCC824 by introducing heat shock proteins from an extremophilic bacterium.

    J. Biotechnol. 2017; 252: 1-10

    • Ling C.
    • et al.

    Engineering self-flocculating Halomonas campaniensis for wastewaterless open and continuous fermentation.

    Biotechnol. Bioeng. 2019; 116: 805-815

    • Nickel D.B.
    • et al.

    Multi-scale variability analysis of wheat straw-based ethanol biorefineries identifies bioprocess designs robust against process input variations.

    Front. Energy Res. 2020; 8: 55

    • Kumar R.
    • Pal P.

    Lipase immobilized graphene oxide biocatalyst assisted enzymatic transesterification of Pongamia pinnata (Karanja) oil and downstream enrichment of biodiesel by solar-driven direct contact membrane distillation followed by ultrafiltration.

    Fuel Process. Technol. 2021; 211106577

    • Lotti M.
    • et al.

    Enzymatic production of biodiesel: strategies to overcome methanol inactivation.

    Biotechnol. J. 2018; 13e1700155

    • Rahman Q.
    • et al.

    Enzyme-assisted extraction for optimized recovery of phenolic bioactives from Peganum hermala leaves using response surface methodology.

    Curr. Top. Nutraceutical Res. 2019; 17: 349-354

    • Qin L.
    • et al.

    Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation.

    Metab. Eng. 2020; 61: 160-170

    • Feidl F.
    • et al.

    Combining mechanistic modeling and Raman spectroscopy for monitoring antibody chromatographic purification.

    Processes. 2019; 7: 683

    • Osterwalder M.
    • et al.

    Enhancer redundancy provides phenotypic robustness in mammalian development.

    Nature. 2018; 554: 239-243

    • Minden S.
    • et al.

    Performing in spite of starvation: how Saccharomyces cerevisiae maintains robust growth when facing famine zones in industrial bioreactors.

    Microb. Biotechnol. 2022; 16.1: 148-168

    • Jiang T.
    • et al.

    Recent advances in improving metabolic robustness of microbial cell factories.

    Curr. Opin. Biotechnol. 2020; 66: 69-77

    • Kang K.
    • et al.

    Linking genetic, metabolic, and phenotypic diversity among Saccharomyces cerevisiae strains using multi-omics associations.

    GigaScience. 2019; 8giz015

    • Täuber S.
    • et al.

    dMSCC: a microfluidic platform for microbial single-cell cultivation of Corynebacterium glutamicum under dynamic environmental medium conditions.

    Lab Chip. 2020; 20: 4442-4455

    • Ali H.
    • et al.

    CFD and kinetic-based modeling to optimize the sparger design of a large-scale photobioreactor for scaling up of biofuel production.

    Biotechnol. Bioeng. 2019; 116: 2200-2211

    • Bayer B.
    • et al.

    The shortcomings of accurate rate estimations in cultivation processes and a solution for precise and robust process modeling.

    Bioprocess Biosyst. Eng. 2020; 43: 169-178

    • Liu Y.
    • Gunawan R.

    Bioprocess optimization under uncertainty using ensemble modeling.

    J. Biotechnol. 2017; 244: 34-44

    • Rathore A.S.
    • et al.

    Case study and application of process analytical technology (PAT) towards bioprocessing: use of on-line high-performance liquid chromatography (HPLC) for making real-time pooling decisions for process chromatography.

    Biotechnol. Bioeng. 2008; 100: 306-316

  • spot_img

    Latest Intelligence

    spot_img