Zephyrnet Logo

An antiviral trap made of protein nanofibrils and iron oxyhydroxide nanoparticles

Date:

  • 1.

    Liu, C. et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci. 6, 315–331 (2020).

    CAS  Article  Google Scholar

  • 2.

    Gall, A. M., Mariñas, B. J., Lu, Y. & Shisler, J. L. Waterborne viruses: a barrier to safe drinking water. PLoS Pathog. 11, 1–7 (2015).

    CAS  Article  Google Scholar

  • 3.

    Reynolds, K. A., Mena, K. D. & Gerba, C. Risk of waterborne illness via drinking water in the United States. Rev. Environ. Contam. Toxicol. 192, 117–158 (2008).

    Article  Google Scholar

  • 4.

    Sinclair, R. G., Jones, E. L. & Gerba, C. P. Viruses in recreational water-borne disease outbreaks: a review. J. Appl. Microbiol. 107, 1769–1780 (2009).

    CAS  Article  Google Scholar

  • 5.

    Sorrell, E. M., Wan, H., Araya, Y., Song, H. & Perez, D. R. Minimal molecular constraints for respiratory droplet transmission of an avian-human H9N2 influenza A virus. Proc. Natl Acad. Sci. USA 106, 7565–7570 (2009).

    CAS  Article  Google Scholar

  • 6.

    Morawska, L. & Cao, J. Airborne transmission of SARS-CoV-2: the world should face the reality. Environ. Int. 139, 105730 (2020).

    CAS  Article  Google Scholar

  • 7.

    Leung, N. H. L. et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat. Med. 26, 676–680 (2020).

    CAS  Article  Google Scholar

  • 8.

    Prather, K. A. et al. Airborne transmission of SARS-CoV-2. Science 370, 303–305 (2020).

    Article  CAS  Google Scholar

  • 9.

    Tellier, R. Review of aerosol transmission of influenza A virus. Emerg. Infect. Dis. 12, 1657–1662 (2006).

    Article  Google Scholar

  • 10.

    Patrício Silva, A. L. et al. Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chem. Eng. J. 405, 126683 (2021).

    Article  CAS  Google Scholar

  • 11.

    Ammendolia, J., Saturno, J., Brooks, A. L., Jacobs, S. & Jambeck, J. R. An emerging source of plastic pollution: environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environ. Pollut. 269, 116160 (2021).

    CAS  Article  Google Scholar

  • 12.

    Prata, J. C., Silva, A. L. P., Walker, T. R., Duarte, A. C. & Rocha-Santos, T. COVID-19 pandemic repercussions on the use and management of plastics. Environ. Sci. Technol. 54, 7760–7765 (2020).

    CAS  Article  Google Scholar

  • 13.

    Krammer, F. SARS-CoV-2 vaccines in development. Nature 586, 516–527 (2020).

    CAS  Article  Google Scholar

  • 14.

    Ball, P. The lightning-fast quest for COVID vaccines—and what it means for other diseases. Nature 589, 16–18 (2021).

    CAS  Article  Google Scholar

  • 15.

    Khamsi, R. Can the world make enough coronavirus vaccine? Nature 580, 578–580 (2020).

    CAS  Article  Google Scholar

  • 16.

    Korber, B. et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827 (2020).

    CAS  Article  Google Scholar

  • 17.

    Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 9, e61312 (2020).

    CAS  Article  Google Scholar

  • 18.

    Boone, S. A. & Gerba, C. P. Significance of fomites in the spread of respiratory and enteric viral disease. Appl. Environ. Microbiol. 73, 1687–1696 (2007).

    CAS  Article  Google Scholar

  • 19.

    Tuladhar, E. et al. Reducing viral contamination from finger pads: handwashing is more effective than alcohol-based hand disinfectants. J. Hosp. Infect. 90, 226–234 (2015).

    CAS  Article  Google Scholar

  • 20.

    Coia, J. E. et al. Guidance on the use of respiratory and facial protection equipment. J. Hosp. Infect. 85, 170–182 (2013).

    CAS  Article  Google Scholar

  • 21.

    Sangkham, S. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Stud. Chem. Environ. Eng. 2, 100052 (2020).

    Article  Google Scholar

  • 22.

    Tran, H. N. et al. SARS-CoV-2 coronavirus in water and wastewater: a critical review about presence and concern. Environ. Res. 193, 110265 (2021).

    CAS  Article  Google Scholar

  • 23.

    Drinking-water: Key Facts (World Health Organization, 2019); https://www.who.int/news-room/fact-sheets/detail/drinking-water

  • 24.

    Ramani, S. & Kang, G. Viruses causing childhood diarrhoea in the developing world. Curr. Opin. Infect. Dis. 22, 477–482 (2009).

    Article  Google Scholar

  • 25.

    Prevost, B. et al. Viral persistence in surface and drinking water: suitability of PCR pre-treatment with intercalating dyes. Water Res. 91, 68–76 (2016).

    CAS  Article  Google Scholar

  • 26.

    Carratalà, A., Bachmann, V., Julian, T. R. & Kohn, T. Adaptation of human enterovirus to warm environments leads to resistance against chlorine disinfection. Environ. Sci. Technol. 54, 11292–11300 (2020).

    Article  CAS  Google Scholar

  • 27.

    Sigstam, T. et al. Subtle differences in virus composition affect disinfection kinetics and mechanisms. Appl. Environ. Microbiol. 79, 3455–3467 (2013).

    CAS  Article  Google Scholar

  • 28.

    Wigginton, K. R., Ye, Y. & Ellenberg, R. M. Emerging investigators series: the source and fate of pandemic viruses in the urban water cycle. Environ. Sci. Water Res. Technol. 1, 735–746 (2015).

    Article  Google Scholar

  • 29.

    Bogler, A. et al. Rethinking wastewater risks and monitoring in light of the COVID-19 pandemic. Nat. Sustain. 3, 981–990 (2020).

    Article  Google Scholar

  • 30.

    Bivins, A. et al. Persistence of SARS-CoV-2 in water and wastewater. Environ. Sci. Technol. Lett. 7, 937–942 (2020).

    CAS  Article  Google Scholar

  • 31.

    Hornstra, L. M. et al. Monitoring the integrity of reverse osmosis membranes using novel indigenous freshwater viruses and bacteriophages. Environ. Sci. Water Res. Technol. 5, 1535–1544 (2019).

    CAS  Article  Google Scholar

  • 32.

    Ale, A. et al. Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquat. Toxicol. 211, 46–56 (2019).

    CAS  Article  Google Scholar

  • 33.

    Abramenko, N. et al. The effect of capping agents on the toxicity of silver nanoparticles to Danio rerio embryos. Nanotoxicology 13, 1–13 (2019).

    CAS  Article  Google Scholar

  • 34.

    Aquino De Carvalho, N., Stachler, E. N., Cimabue, N. & Bibby, K. Evaluation of Phi6 persistence and suitability as an enveloped virus surrogate. Environ. Sci. Technol. 51, 8692–8700 (2017).

    CAS  Article  Google Scholar

  • 35.

    Farley, M. M. 2009 H1N1 influenza: a twenty-first century pandemic with roots in the early twentieth century. Am. J. Med. Sci. 340, 202–208 (2010).

    Article  Google Scholar

  • 36.

    Pecson, B. M., Decrey, L. & Kohn, T. Photoinactivation of virus on iron-oxide coated sand: enhancing inactivation in sunlit waters. Water Res. 46, 1763–1770 (2012).

    CAS  Article  Google Scholar

  • 37.

    Block, K. A. et al. Disassembly of the cystovirus Φ6 envelope by montmorillonite clay. MicrobiologyOpen 3, 42–51 (2014).

    CAS  Article  Google Scholar

  • 38.

    Kosmulski, M. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Adv. Colloid Interface Sci. 238, 1–61 (2016).

    CAS  Article  Google Scholar

  • 39.

    Michen, B. & Graule, T. Isoelectric points of viruses. J. Appl. Microbiol. 109, 388–397 (2010).

    CAS  Google Scholar

  • 40.

    Nieto-Juarez, J. I. & Kohn, T. Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Photochem. Photobiol. Sci. 12, 1596–1605 (2013).

    CAS  Article  Google Scholar

  • 41.

    Ryan, J. N. et al. Field and laboratory investigations of inactivation of viruses (PRD1 and MS2) attached to iron oxide-coated quartz sand. Environ. Sci. Technol. 36, 2403–2413 (2002).

    CAS  Article  Google Scholar

  • 42.

    Harvey, R. W. & Ryan, J. N. Use of PRD1 bacteriophage in groundwater viral transport, inactivation, and attachment studies. FEMS Microbiol. Ecol. 49, 3–16 (2004).

    CAS  Article  Google Scholar

  • 43.

    Vajda, J. et al. Mono- and polyprotic buffer systems in anion exchange chromatography of influenza virus particles. J. Chromatogr. A 1448, 73–80 (2016).

    CAS  Article  Google Scholar

  • 44.

    Pandey, L. M. Surface engineering of personal protective equipments (PPEs) to prevent the contagious infections of SARS-CoV-2. Surf. Eng. 36, 901–907 (2020).

    CAS  Article  Google Scholar

  • 45.

    Shirasaki, N., Matsushita, T., Matsui, Y., Marubayashi, T. & Murai, K. Investigation of enteric adenovirus and poliovirus removal by coagulation processes and suitability of bacteriophages MS2 and φX174 as surrogates for those viruses. Sci. Total Environ. 563–564, 29–39 (2016).

    Article  CAS  Google Scholar

  • 46.

    Shokri Doodeji, M. & Zerafat, M. A review on the applications of nanofiltration in virus removal and pharmaceutical industries. Glob. J. Nanomed. 3, 1–3 (2018).

    Google Scholar

  • 47.

    Bolisetty, S., Peydayesh, M. & Mezzenga, R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem. Soc. Rev. 48, 463–487 (2019).

    CAS  Article  Google Scholar

  • 48.

    Muga, H. E. & Mihelcic, J. R. Sustainability of wastewater treatment technologies. J. Environ. Manag. 88, 437–447 (2008).

    CAS  Article  Google Scholar

  • 49.

    Razali, M. et al. Sustainable wastewater treatment and recycling in membrane manufacturing. Green Chem. 17, 5196–5205 (2015).

    CAS  Article  Google Scholar

  • 50.

    Szekely, G., Jimenez-Solomon, M. F., Marchetti, P., Kim, J. F. & Livingston, A. G. Sustainability assessment of organic solvent nanofiltration: from fabrication to application. Green Chem. 16, 4440–4473 (2014).

    CAS  Article  Google Scholar

  • 51.

    ViralZone (Swiss Institute of Bioinformatics); www.expasy.org/viralzone

  • 52.

    Kurpiewska, K. et al. Investigation of high pressure effect on the structure and adsorption of β-lactoglobulin. Colloids Surf. B 161, 387–393 (2018).

    CAS  Article  Google Scholar

  • 53.

    Berman, H. M. et al. The protein data bank. Acta Crystallogr. D 58, 899–907 (2002).

    Article  CAS  Google Scholar

  • 54.

    Busnadiego, I. et al. Antiviral activity of type I, II, and III interferons counterbalances ACE2 inducibility and restricts SARS-CoV-2. MBio 11, 1–10 (2020).

    Article  Google Scholar

  • 55.

    Pohl, M. O. et al. SARS-CoV-2 variants reveal features critical for replication in primary human cells. PLoS Biol. 19, e3001006 (2021).

    CAS  Article  Google Scholar

  • 56.

    Jung, J. M., Savin, G., Pouzot, M., Schmitt, C. & Mezzenga, R. Structure of heat-induced β-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. Biomacromolecules 9, 2477–2486 (2008).

    CAS  Article  Google Scholar

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://www.nature.com/articles/s41565-021-00920-5

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?