Connect with us

Aerospace

Additive Manufacturing; Perhaps, the Biggest Tectonic Shift Enabling to Industry 4.0

Published

on

3D printing or additive manufacturing is bringing monumental changes to a number of important industries. Companies have begun printing everything from fully functioning cars to Michelin-stared dinners. Medical research institutes have even experimented with printing functioning body parts.

Recently, additive manufacturing showcased its practical versatility. It is becoming a powerful tool in tackling some of the unprecedented challenges posed by the COVID-19. Helping to supply health workers with personal protective equipment and patients with ventilators.

Advanced manufacturing tools like 3D printing—also known as additive manufacturing—are essential for the types of performance-sensitive applications where this optimization is compelling.

3D printing is more cost-competitive at lower production volumes. Because you do not need to reach an economy of scale to offset setup costs. Therefore, it facilitates the mass customization that generative design makes possible. As the cost of 3D printing continues to decrease and the variety of materials increase, 3D printing is becoming practical for small and mid-volume parts for more and more applications.

The Electric Vehicle and the Automotive Industry holds a prominent position in manufacturing with the latest technologies and Innovations. Automotive electrical and electronic systems are becoming more complex. Making the task of designing today’s cars much more difficult. Infotainment, comfort and convenience features, and even safety- and mission-critical systems such as steering and throttle control are accomplished through electrically powered computers, actuators, and sensors.

Additive Manufacturing with the help of Generative design takes system definitions and requirements as input and generates architectural proposals for the logic, software, hardware, and networks of the E/E systems using rules-based automation. These rules capture the knowledge and experience of the veteran engineers to guide younger engineers throughout the design. Capturing this IP helps companies to develop both vehicle architectures and new generations of engineers as they learn and implement existing company knowledge.

It also offers the ability to consolidate parts, so a single complex geometry created by a generative algorithm and 3D printed can often replace assemblies of dozens of separate parts.

Aerospace

Additive Manufacturing

Always on the cutting edge, the aerospace industry was an early adopter of additive manufacturing. Aerospace companies must meet some of the manufacturing industry’s most stringent standards, and parts and components need to be made of the highest-performance materials. Using AM, engineers can design complex, high-strength parts while also reducing the weight of aerospace components by printing more efficient geometries and eliminating significant amounts of unnecessary material. This allows for lower fuel consumption, reduced CO2 emissions, and reduced costs (plus, better airfares).

Consumer Products

Additive manufacturing comes with a plethora of advantages for manufacturing on-demand supplements for consumer-based products. For marketing teams taking a product from concept to completion, often the biggest amount of time is spent on design. To be sure the product is just right, a great deal of time is spent on creating prototypes to prove concepts to stakeholders and ultimately deliver a consumer-pleasing product.

By embracing AM, marketing teams can develop iterations of their product much quicker, and then rapidly pivot to adjust the design as needed. As additive manufacturing continues to advance with build volume and speed, more consumer products may be produced through AM technologies for quick and efficient mass production demands.

Infrastructure

It is not far-fetched to think of living in a house or walking over a bridge that is completely made out of a 3D printer anymore. Soon, this may become reality. In fact, it already is in the Netherlands where the world’s first 3D-printed pedestrian bridge was unveiled in 2018. The structure was created by additive robotics layering molten steel and measures nearly 40 feet across.

Additive manufacturing in the construction market is expanding, ushering in a new era for the industry. According to a study by Transparency Market Research, 3D printing in the infrastructure secretary is predicted to expand at a CAGR of 33 per cent by 2027. Since printed materials can be precisely applied layer by layer when building infrastructure or constructing buildings, AM reduces material waste and allows construction to be as cost-efficient as possible.

Additionally, 3D printing technology allows for complex design structures. Since the materials are printed precisely – reducing the likelihood of infrastructure accidents from construction mistakes and poor design.

While 3D printing is not being employed in everyday bridge building, there is plenty of future potentials as the industry expands. And, with a recent report finding that over a third of all U.S. bridges need major repair work or should be replaced, there may be a rapid expansion of the industry in the near future.

Medical & Pharmaceutical

Additive manufacturing has revolutionized the medical industry, turning what was once science fiction into a new reality. The technology is delivering breakthroughs to doctors, patients, and research institutions. From durable prosthetics and true-to-life anatomical models to surgical grade components, the incredible plethora of objects that have already been successfully printed in the medical field gives a glimpse into the potential that this technology holds for healthcare in the near future.

For example, additive manufacturing allows for 3D printed dental appliances and custom-made devices, such as dentures, crowns, and even Invisalign, to be constructed from a variety of substrates and prints customized to each individual. Currently, the 3D printing market for digital dentistry is valued at $2.5 billion — and is expected to only keep growing. Additionally, additive manufacturing allows for devices such as hearing aids that can be mass-produced made for a better fit to ensure the highest level of comfort for the user.

One of the latest ongoing projects is the use of additive technology by researchers to print human embryonic stem cells. By doing so, these stem cells can then be used to create tissue for testing drugs or growing replacement organs, to print skin that could replace skin that’s been burned or damaged, and to print cancer cells to study and test out new drugs on them. Surgeon Anthony Atala, Director of the Wake Forest Institute for Regenerative Medicine, has even been working on printing organs, believing that printing an organ may soon replace transplanting an organ.

Hence, Additive Manufacturing is leading the industries and manufacturers into an era where the traditional ways of manufacturing would be disrupted, leaving faster, greater, and precise solutions for the manufacturing of future industries and products.

Mayank Vashisht | ELE Times | Technology Journalist

Coinsmart. Beste Bitcoin-Börse in Europa
Source: https://www.eletimes.com/additive-manufacturing-perhaps-the-biggest-tectonic-shift-enabling-to-industry-4-0

Aerospace

Rocket Lab returns to service with “flawless” launch for U.S. military

Published

on

Rocket Lab’s Electron launch vehicle lifts off at 2 a.m. EDT (0600 GMT; 6 p.m. local time) Thursday from Zealand. Credit: Rocket Lab

Resuming launches after a mission failure two months ago, Rocket Lab successfully placed a small U.S. military research and development satellite into orbit Thursday following a fiery liftoff from New Zealand on a flight that was originally supposed to launch from the company’s new pad in Virginia.

The 59-foot-tall (18-meter) Electron rocket ignited its nine kerosene-fueled Rutherford engines and climbed away from Launch Complex 1 on the North Island of New Zealand at 2 a.m. EDT (0600 GMT) Thursday.

Liftoff from Rocket Lab’s privately-owned launch base on Mahia Peninsula occurred at 6 p.m. local time, just after sunset.

Heading east from Mahia, the rocket’s first stage burned its nine engines for about two-and-a-half minutes, followed by a six-minute firing of the second stage engine to reach a preliminary parking orbit.

A kick stage deployed from the the Electron rocket’s second stage to begin a coast across the Pacific Ocean, Central America, and the Caribbean Sea before igniting its Curie engine reach a circular orbit about 372 miles (600 kilometers) above Earth at an inclination of 37 degrees to the equator.

Rocket Lab, a California-based company founded in New Zealand, confirmed a good deployment of the U.S. military’s small experimental Monolith spacecraft about 52 minutes after liftoff.

“Payload deployed, flawless launch and mission by the team!” tweeted Peter Beck, Rocket Lab’s founder and CEO.

The mission was the 21st flight of a Rocket Lab Electron launch vehicle since 2017, and the eighth to carry a payload for a U.S. military or intelligence agency customer.

It was also the first Rocket Lab mission since May 15, when an Electron rocket failed before reaching orbit with two commercial BlackSky Earth-imaging satellites.

Rocket Lab’s internal investigation, with oversight from the Federal Aviation Administration, concluded the failure was caused by a problem with the igniter system on the Electron launcher’s second stage engine.

“This induced a corruption of signals within the engine computer that caused the Rutherford engine’s thrust vector control (TVC) to deviate outside nominal parameters and resulted in the engine computer commanding zero pump speed, shutting down the engine,” Rocket Lab said in a statement earlier this month.

Live video from beamed down from the rocket May 15 showed the second stage’s kerosene-fueled Rutherford engine igniting and immediately begin to tumble about three minutes into the flight. The engine shut down prematurely after firing for a few seconds, well short of a planned six-minute burn.

The rocket and its two BlackSky payloads fell into the Pacific Ocean downrange from the launch site in New Zealand.

Rocket Lab said the igniter problem “resulted from a previously undetectable failure mode within the ignition system that occurs under a unique set of environmental pressures and conditions.”

The company said engineers found no evidence of the problem during pre-flight testing, which included more than 400 seconds of burn time for the same engine. But Rocket Lab said it was able to replicate the issue after the flight, and teams “implemented redundancies in the ignition system to prevent any future reoccurrence, including modifications to the igniter’s design and manufacture.”

The May 15 mission was the third time an Electron rocket failed to reach orbit on 20 attempts since 2017.

Engineers traced the cause of an Electron second stage failure in July 2020 to a faulty electrical connector, which detached in flight and led to an early engine shutdown, dooming seven small commercial satellites.

Rocket Lab said it implemented improved testing to better screen for bad connectors, and the company successfully launched its next Electron mission less than two months later.

Rocket Lab racked up six straight successful Electron missions before the launch failure May 15. The company’s first orbital launch attempt in 2017 failed to reach orbit due to a ground system failure that caused safety teams to send a flight termination command to the rocket.

The small launch company says it is ready to resume a busy flight cadence through the rest of the year. Rocket Lab is close to beginning launches from two new pads — one in Virginia and another adjacent to its existing launch complex in New Zealand — to accommodate a more rapid flight rate.

Thursday’s mission, designated STP-27RM, was originally supposed to launch from Rocket Lab’s new pad at the Mid-Atlantic Regional Spaceport, located at NASA’s Wallops Flight Facility in Virginia. But delays in NASA’s certification of the Electron rocket’s new autonomous flight safety system have kept Rocket Lab from beginning service from the Virginia launch base.

In June, officials at Wallops said they hope to complete certification of the new autonomous flight safety system by the end of the year, enabling the first Rocket Lab launch from U.S. soil. With the launch of the military’s Monolith mission moved from Virginia to New Zealand, Rocket Lab’s first flight from Launch Complex 2 at Wallops will likely launch NASA’s CAPSTONE CubeSat payload to the moon.

The CAPSTONE mission is scheduled for launch late this year, according to NASA and Rocket Lab.

The Space Test Program, which helps manage development of the military’s experimental satellites, procured the launch of the Monolith satellite with the Rocket Systems Launch Program, part of the Space Force’s Space and Missile Systems Center.

Other partners on the mission include the Defense Innovation Unit and the Rapid Agile Launch Initiative, a program that books rides to orbit for small military satellites on emerging commercial small satellite launchers.

The Monolith satellite, built by the non-profit Space Dynamics Laboratory at Utah State University, will demonstrate the use of a deployable sensor that is relatively large in mass compared to the mass of the spacecraft itself, according to the Space and Missile Systems Center.

The deployment of the sensor will change the satellite’s dynamic properties, testing the spacecraft’s ability to maintain stable attitude control, military officials said.

When the military announced the Monolith mission in 2019, officials said the satellite’s sensor package is aimed at space weather monitoring.

Data from the Monolith mission will help engineers design future small satellites to host deployable sensors, such as weather monitoring instruments. The Space Force said that will help reduce the cost, complexity, and development timelines of future missions.

“The satellite will also provide a platform to test future space protection capabilities,” the Space Force said.

Rocket Lab did not attempt to recover the Electron rocket’s first stage booster on Thursday’s mission. The company has retrieved two Electron boosters from the Pacific Ocean as engineers move toward reusing the rocket’s first stage, an innovation Rocket Lab says will allow for a faster launch rate and lower costs.

Rocket Lab’s Electron rocket is sized to deliver small satellites to orbit, providing a dedicated ride for spacecraft that would otherwise have to fly as a lower-priority payload on a larger launch vehicle.

The Electron rocket can deliver a payload of up to 440 pounds (200 kilograms) to a 310-mile-high (500-kilometer) sun-synchronous orbit, about 1% of the lift capability of a SpaceX Falcon 9 launcher. Rocket Lab sells dedicated Electron missions for as little as $7 million.

Email the author.

Follow Stephen Clark on Twitter: @StephenClark1.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spaceflightnow.com/2021/07/29/rocket-lab-returns-to-service-with-flawless-launch-for-u-s-military/

Continue Reading

Aerospace

Keysight Technologies Holds Aerospace Defense Symposium in India August 25-26, 2021

Published

on

Keysight Technologies enables customers to learn about the latest electronic test at the Aerospace Defense Symposium 2021 India.  Keysight experts will present vital information relating to the next generation of aerospace defense technology, in addition to demonstrations of the company’s solutions for this dynamic industry, which include next-generation spectrum analyzers, signal sources, vector network analyzers, ultra high bandwidth oscilloscopes, among others.

When:             August 25th – 26th 2021

Where:            Virtual: https://connectlp.keysight.com/Aerospace-Defense-Symposium-India-2021

Keysight will present on a wide variety of topics relevant to the aerospace and defence industry as follows:

Day 1:             August 25, 2021 | 10:00 a.m. IST – 1:00 p.m. IST

Topics include:

  • Understanding technological advances in ultra-wideband mmwave signal generation and analysis for radar and satellite
  • Millimeter-wave frequency bands provide wide available bandwidths that enable high-throughput data, range resolution, accuracy and low latency. Keysight will discuss how technological advances help facilitate rapid measurements with ultra-wideband mmwave signal generation and analysis for radar and satellite applications.
  • Deep dive into Multichannel radio frequency/radar analysis with time domain instrumentation
    • With the advancement in time domain instrumentation, traditional radio frequency (RF) measurements no longer “separate” from the digital design engineer. Time domain instrumentation like next generation multi-channel oscilloscopes can help with RF analysis. Keysight will showcase how multichannel RF/radar analysis can be executed with time domain instrumentation tools.
  • Modulation distortion, noise power ratio (NPR), phase noise measurements with next generation network analysis
    • Modern network analysis tools help speed state of the art measurements including NPR, modulation distortion, and phase noise measurements. Keysight will discuss how the company’s network analyzers will help customers achieve desired measurements.
  • Seamless test methodologies for modern deceptive jamming designs
    • Digital radio frequency memory (DRFM) takes RF signals, digitizes them, and then creates new RF energy based on the pulse received. With a fast turnaround time, it can be used to create multiple false targets. Keysight will explore DRFM and its advantages during this session.

Day 2: August 26, 2021 | 10:00 a.m. IST – 1:00 p.m. IST

  • Demystifying complex test scenarios for aerospace defense applications with Keysight’s PathWave Test Automation software
    • Keysight’s PathWave Test Automation software enables customer to save time with connected test workflows. In this session, Keysight experts will present how to address complex test scenarios in aerospace defense applications.
  • Compact mmWave receiver design for military satellite communication with Keysight’s PathWave Advanced Design System (ADS) software
    • First time right system design ensures that a customer’s system has a competitive advantage. Keysight will discuss how PathWave ADS helps seamlessly design mmWave receivers for military satellite communication.
  • Quantum and optical communication in aerospace defense | challenges and solutions
    • As the end of Moore’s law draws near, quantum technology provides the means to achieve breakthroughs in computing. The unique properties of superposition and entanglement enable previously unimagined performance in quantum applications such as computing, communications and sensing. Keysight experts will discuss how quantum technology and optical communication go hand in hand.
  • Sneak-peek into 5G technology advancements in Aerospace Defense & Military
    • The expansion of 5G design for military and tactical applications has created specific requirements for successful implementation. Whether it is radar or satellite, 5G will play a vital role moving forward. Keysight will deliver a sneak peek into how 5G technological advancements will be leveraged in aerospace, defense and the military.

For more information, visit www.keysight.com 

Previous articleResearchers Design AI System for Social Distance Breach Detection
ELE Times Research Desk

ELE Times provides extensive global coverage of Electronics, Technology and the Market. In addition to providing in-depth articles, ELE Times attracts the industry’s largest, qualified and highly engaged audiences, who appreciate our timely, relevant content and popular formats. ELE Times helps you build experience, drive traffic, communicate your contributions to the right audience, generate leads and market your products favourably.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://www.eletimes.com/keysight-technologies-holds-aerospace-defense-symposium-in-india-august-25-26-2021

Continue Reading

Aerospace

Live coverage: Rocket Lab set for return-to-flight launch Thursday

Published

on

Live coverage of the countdown and launch of a Rocket Lab Electron rocket from Launch Complex 1 on Mahia Peninsula in New Zealand carrying the Air Force Research Laboratory’s Monolith microsatellite. Text updates will appear automatically below. Follow us on Twitter.

Rocket Lab’s live video webcast begins approximately 20 minutes prior to launch, and will be available on this page.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spaceflightnow.com/2021/07/29/rocket-lab-stp-27rm-mission-status-center/

Continue Reading

Aerospace

Live coverage: Rocket Lab set for return-to-flight launch Thursday

Published

on

Live coverage of the countdown and launch of a Rocket Lab Electron rocket from Launch Complex 1 on Mahia Peninsula in New Zealand carrying the Air Force Research Laboratory’s Monolith microsatellite. Text updates will appear automatically below. Follow us on Twitter.

Rocket Lab’s live video webcast begins approximately 20 minutes prior to launch, and will be available on this page.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://spaceflightnow.com/2021/07/29/rocket-lab-stp-27rm-mission-status-center/

Continue Reading
AR/VR3 days ago

Review: Winds & Leaves

Esports4 days ago

Legends of Runeterra adding new Lab of Legends mode: The Saltwater Scourge

Fintech5 days ago

Finding the right balance with hybrid client experiences

IOT4 days ago

The Current State of Indoor Positioning with IoT | Navigine’s Alexey Panyov and Elvina Sharafutdinova

Energy5 days ago

SOL: Sasol Limited – Production And Sales Metrics And Financial Results For The Year Ended 30 June 2021

Esports5 days ago

Former LPL pro Uzi is launching an esports team and recruiting players in Wild Rift

Blockchain5 days ago

The RSI for Bitcoin Breaks Out Of Six-Month Downward Trend

Cleantech4 days ago

The Grim Reaper & The Republican Party Embracing Climate Action Are The Only Things That Will Eliminate US Climate Change Deniers

Start Ups5 days ago

B2B Payment Platform Nium Valued Above $1B In $200M Funding 

Cyber Security5 days ago

Apple Released a Major Security Update with Fixes for a Security Defect

Blockchain5 days ago

Goldman Sachs Files for “DeFi” ETF to Track Tech Giants

Energy5 days ago

Global Silicon Wafer Sourcing and Procurement Report with COVID-19 Impact Analysis, Supplier Evaluation and Price Trends | SpendEdge

Esports4 days ago

How to level up every trade skill in New World

Esports3 days ago

New World Faction Armor Sets

Blockchain5 days ago

Kaseya recovers data stolen in ransomware attack with mysterious decryption tool

Esports3 days ago

Are Splitgate’s servers down? Here’s how to check server status

Esports5 days ago

Invictus Gaming sweep Top Esports, keep playoff hopes alive in 2021 LPL Summer Split

Energy5 days ago

Duplo reconhecimento! Sistema de Conversão de Energia da TBEA Sunoasis obtém as certificações CQC e TÜV SÜD

Blockchain5 days ago

Chicago Bulls team up with Shopify to launch NFT series

Private Equity5 days ago

Levine Leichtman continues exit flurry with FlexXray sale to Warburg Pincus, Tilia

Trending