Connect with us

Quantum

A Video Tour of the Standard Model

Published

on

Recently, Quanta has explored the collaboration between physics and mathematics on one of the most important ideas in science: quantum field theory. The basic objects of a quantum field theory are quantum fields, which spread across the universe and, through their fluctuations, give rise to the most fundamental phenomena in the physical world. We’ve emphasized the unfinished business in both physics and mathematics — the ways in which physicists still don’t fully understand a theory they wield so effectively, and the grand rewards that await mathematicians if they can provide a full description of what quantum field theory actually is.

This incompleteness, however, does not mean the work has been unsatisfying so far.

For our final entry in this “Math Meets QFT” series, we’re exploring the most prominent quantum field theory of them all: the Standard Model. As the Cambridge physicist David Tong puts it in the accompanying video, it’s “the most successful scientific theory of all time” despite being saddled with a “rubbish name.”

The Standard Model describes physics in the three spatial dimensions and one time dimension of our universe. It captures the interplay between a dozen quantum fields representing fundamental particles and a handful of additional fields representing forces. The Standard Model ties them all together into a single equation that scientists have confirmed countless times, often with astonishing accuracy. In the video, Professor Tong walks us through that equation term by term, introducing us to all the pieces of the theory and how they fit together. The Standard Model is complicated, but it is easier to work with than many other quantum field theories. That’s because sometimes the fields of the Standard Model interact with each other quite feebly, as writer Charlie Wood described in the second piece in our series.

The Standard Model has been a boon for physics, but it’s also had a bit of a hangover effect. It’s been extraordinarily effective at explaining experiments we can do here on Earth, but it can’t account for several major features of the wider universe, including the action of gravity at short distances and the presence of dark matter and dark energy. Physicists would like to move beyond the Standard Model to an even more encompassing physical theory. But, as the physicist Davide Gaiotto put it in the first piece in our series, the glow of the Standard Model is so strong that it’s hard to see beyond it.

And that, maybe, is where math comes in. Mathematicians will have to develop a fresh perspective on quantum field theory if they want to understand it in a self-consistent and rigorous way. There’s reason to hope that this new vantage will resolve many of the biggest open questions in physics.

The process of bringing QFT into math may take some time — maybe even centuries, as the physicist Nathan Seiberg speculated in the third piece in our series — but it’s also already well underway. By now, math and quantum field theory have indisputably met. It remains to be seen what happens as they really get to know each other.

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.

Click here to access.

Source: https://www.quantamagazine.org/a-video-tour-of-the-standard-model-20210716/

Quantum

Proof Assistant Makes Jump to Big-League Math

Published

on

Computer proof assistants have been an intriguing subplot in mathematics for years — promising to automate core aspects of the way mathematicians work, but in practice having little effect on the field.

But a new result, completed in early June, has the feel of a rookie’s first hit in the big leagues: At last, a proof assistant has made a real contribution to the leading edge of mathematical research by verifying the correctness of a complicated, modern proof.

“It demonstrates that modern maths can be formalized in a theorem prover,” said Bhavik Mehta, a graduate student at the University of Cambridge who contributed to the work.

The proof in question is by Peter Scholze of the University of Bonn, one of the most widely respected mathematicians in the world. It is just one piece of a larger project called “condensed mathematics” that he and Dustin Clausen of the University of Copenhagen have been working on for several years.

Their goal is to create new foundations for topology, replacing the traditional notion of a topological space — whose examples include the sphere and the doughnut — with more versatile objects that the authors call condensed sets. In this new perspective, topological spaces are thought of as being assembled from infinite points of dust glued together.

That project includes a particularly important, difficult proof that Scholze worked out himself during a consuming week in July 2019. It establishes that an area of math called real functional analysis still works if you replace topological spaces with condensed sets.

Scholze began the proof on a Monday. He worked entirely in his head, barely writing anything down, let alone using a computer. By Thursday afternoon he’d nearly figured it out, save one piece that he just couldn’t get right. He was also feeling the strain of the intense concentration required to hold such a complicated argument in his active memory. So that night he unwound with some friends at a bar. He paid for it the next morning, Friday.

“I was completely hungover,” said Scholze.

But he also knew that he wouldn’t have time to work over the weekend, making Friday his best chance to finish the proof. The thought of losing touch with everything he’d built up in his mind over the past week, then having to start again fresh on Monday, was more than he wanted to consider.

“I didn’t think I’d have the mental capacity to rebuild this in my head again,” said Scholze.

So he powered through and finished the proof. But afterward, he wasn’t certain that what he had done was correct. The reason was more than the hazy circumstances in which he’d cleared the final hurdle. The proof was so complicated Scholze knew it was possible he had missed something.

“It’s some very convoluted thing with many moving parts. It’s hard to know which parts move by how much when you shift one of these parameters,” said Scholze.

Scholze didn’t find time to actually write down the proof until November 2019. A year later he contacted Kevin Buzzard, a mathematician at Imperial College London and a prominent evangelist for a proof assistant program called Lean. Scholze wanted to know whether it would be possible to type his proof into Lean — turning it into lines of code like a software program — so that the program could verify whether it was really true.

Buzzard shared Scholze’s inquiry with a handful of other members of the Lean community including Johan Commelin, a postdoctoral researcher at the University of Freiburg. Commelin had the perfect background for the job — he’d been using Lean for several years and was familiar with condensed mathematics — and he was convinced that verifying Scholze’s proof would do a lot to legitimize the proof assistant’s standing in the mathematical community.

“Being able to collaborate with Peter on such a project and having his name attached to it would be an enormous boost for Lean,” said Commelin.

But he also thought it could take a year or more to do it, which gave him pause. Commelin was worried he might spend all that time verifying the proof and, at the end, the rest of the math world would just shrug.

“I thought that if I spend two years working on this and I come out of my cave and say, ‘This is fine,’ the rest of the world is going to say, ‘Wow, we already knew this, Peter proved it,’” said Commelin. It wouldn’t matter that Scholze himself wasn’t entirely sure.

So Commelin asked Scholze if he’d be willing to make a public statement vouching for the importance of the work. Scholze agreed, and on Dec. 5, 2020, he wrote a post on Buzzard’s blog.

They called it the “Liquid Tensor Experiment,” a nod to mathematical objects involved in the proof called liquid real vector spaces, and to a progressive rock band he and Commelin enjoy called Liquid Tension Experiment. In the 4,400-word primer, Scholze explained some technical aspects of the result and then added a note testifying in plain language to what he saw as the importance of checking it with a computer.

“I think this may be my most important theorem to date. (It does not really have any applications so far, but I’m sure this will change,)” Scholze wrote. “Better be sure it’s correct…”

Assurance in place, Commelin set to work. After explaining to Lean the mathematical statement whose proof he ultimately wanted the program to check, he brought more mathematicians into the project. They identified a few lemmas — intermediate steps in the proof — that seemed most approachable. They formalized those first, coding them on top of the library of mathematical knowledge that Lean draws on to determine if a given statement is true or not.

Last October, Quanta wrote that the collective effort to write mathematics in Lean has the “air of a barn raising.” This project was no different. Commelin would identify discrete parts of the proof and post them to Zulip, a discussion board that serves as a hub for the Lean community. When mathematicians saw a part of the proof that fit their expertise, they’d volunteer to formalize it.

Mehta was one of about a dozen mathematicians who contributed to the work. In May he saw a post from Commelin asking for help formalizing the proof of a statement called Gordan’s lemma, which related to Mehta’s work in the area of combinatorial geometry. He spent a week coding the proof in terms that were consistent with the larger proof the mathematicians were building. It was emblematic, he said, of the way Lean works.

“It’s one big collaboration with a lot of people doing what they’re good at to make a singular monolith,” he said.

As the work proceeded, Scholze was a consistent presence on Zulip, answering questions and explaining points of the proof — a bit like an architect giving directions to builders on a job site. “He was always within reach,” Commelin said.

At the end of May the group finished formalizing the one part of the proof Scholze was most unsure about. Commelin entered the final keystroke at 1:10 a.m. on May 29. Lean compiled the proof, and it ran like a functioning program, verifying that Scholze’s work was 100% correct. Now Scholze and other mathematicians can apply those techniques from real functional analysis to condensed sets, knowing that they’ll definitely work in this new setting.

And while Scholze still prefers to work out proofs in his head, Lean’s abilities left him impressed. He can now foresee programs like it playing an enduring role in research mathematics.

“This experiment has changed drastically my impression of how capable [proof assistants] are,” Scholze said. “I now think it’s sensible in principle to formalize whatever you want in Lean. There’s no real obstruction.”

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.

Click here to access.

Source: https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/

Continue Reading

Quantum

Proof Assistant Makes Jump to Big-League Math

Published

on

Computer proof assistants have been an intriguing subplot in mathematics for years — promising to automate core aspects of the way mathematicians work, but in practice having little effect on the field.

But a new result, completed in early June, has the feel of a rookie’s first hit in the big leagues: At last, a proof assistant has made a real contribution to the leading edge of mathematical research by verifying the correctness of a complicated, modern proof.

“It demonstrates that modern maths can be formalized in a theorem prover,” said Bhavik Mehta, a graduate student at the University of Cambridge who contributed to the work.

The proof in question is by Peter Scholze of the University of Bonn, one of the most widely respected mathematicians in the world. It is just one piece of a larger project called “condensed mathematics” that he and Dustin Clausen of the University of Copenhagen have been working on for several years.

Their goal is to create new foundations for topology, replacing the traditional notion of a topological space — whose examples include the sphere and the doughnut — with more versatile objects that the authors call condensed sets. In this new perspective, topological spaces are thought of as being assembled from infinite points of dust glued together.

That project includes a particularly important, difficult proof that Scholze worked out himself during a consuming week in July 2019. It establishes that an area of math called real functional analysis still works if you replace topological spaces with condensed sets.

Scholze began the proof on a Monday. He worked entirely in his head, barely writing anything down, let alone using a computer. By Thursday afternoon he’d nearly figured it out, save one piece that he just couldn’t get right. He was also feeling the strain of the intense concentration required to hold such a complicated argument in his active memory. So that night he unwound with some friends at a bar. He paid for it the next morning, Friday.

“I was completely hungover,” said Scholze.

But he also knew that he wouldn’t have time to work over the weekend, making Friday his best chance to finish the proof. The thought of losing touch with everything he’d built up in his mind over the past week, then having to start again fresh on Monday, was more than he wanted to consider.

“I didn’t think I’d have the mental capacity to rebuild this in my head again,” said Scholze.

So he powered through and finished the proof. But afterward, he wasn’t certain that what he had done was correct. The reason was more than the hazy circumstances in which he’d cleared the final hurdle. The proof was so complicated Scholze knew it was possible he had missed something.

“It’s some very convoluted thing with many moving parts. It’s hard to know which parts move by how much when you shift one of these parameters,” said Scholze.

Scholze didn’t find time to actually write down the proof until November 2019. A year later he contacted Kevin Buzzard, a mathematician at Imperial College London and a prominent evangelist for a proof assistant program called Lean. Scholze wanted to know whether it would be possible to type his proof into Lean — turning it into lines of code like a software program — so that the program could verify whether it was really true.

Buzzard shared Scholze’s inquiry with a handful of other members of the Lean community including Johan Commelin, a postdoctoral researcher at the University of Freiburg. Commelin had the perfect background for the job — he’d been using Lean for several years and was familiar with condensed mathematics — and he was convinced that verifying Scholze’s proof would do a lot to legitimize the proof assistant’s standing in the mathematical community.

“Being able to collaborate with Peter on such a project and having his name attached to it would be an enormous boost for Lean,” said Commelin.

But he also thought it could take a year or more to do it, which gave him pause. Commelin was worried he might spend all that time verifying the proof and, at the end, the rest of the math world would just shrug.

“I thought that if I spend two years working on this and I come out of my cave and say, ‘This is fine,’ the rest of the world is going to say, ‘Wow, we already knew this, Peter proved it,’” said Commelin. It wouldn’t matter that Scholze himself wasn’t entirely sure.

So Commelin asked Scholze if he’d be willing to make a public statement vouching for the importance of the work. Scholze agreed, and on Dec. 5, 2020, he wrote a post on Buzzard’s blog.

They called it the “Liquid Tensor Experiment,” a nod to mathematical objects involved in the proof called liquid real vector spaces, and to a progressive rock band he and Commelin enjoy called Liquid Tension Experiment. In the 4,400-word primer, Scholze explained some technical aspects of the result and then added a note testifying in plain language to what he saw as the importance of checking it with a computer.

“I think this may be my most important theorem to date. (It does not really have any applications so far, but I’m sure this will change,)” Scholze wrote. “Better be sure it’s correct…”

Assurance in place, Commelin set to work. After explaining to Lean the mathematical statement whose proof he ultimately wanted the program to check, he brought more mathematicians into the project. They identified a few lemmas — intermediate steps in the proof — that seemed most approachable. They formalized those first, coding them on top of the library of mathematical knowledge that Lean draws on to determine if a given statement is true or not.

Last October, Quanta wrote that the collective effort to write mathematics in Lean has the “air of a barn raising.” This project was no different. Commelin would identify discrete parts of the proof and post them to Zulip, a discussion board that serves as a hub for the Lean community. When mathematicians saw a part of the proof that fit their expertise, they’d volunteer to formalize it.

Mehta was one of about a dozen mathematicians who contributed to the work. In May he saw a post from Commelin asking for help formalizing the proof of a statement called Gordan’s lemma, which related to Mehta’s work in the area of combinatorial geometry. He spent a week coding the proof in terms that were consistent with the larger proof the mathematicians were building. It was emblematic, he said, of the way Lean works.

“It’s one big collaboration with a lot of people doing what they’re good at to make a singular monolith,” he said.

As the work proceeded, Scholze was a consistent presence on Zulip, answering questions and explaining points of the proof — a bit like an architect giving directions to builders on a job site. “He was always within reach,” Commelin said.

At the end of May the group finished formalizing the one part of the proof Scholze was most unsure about. Commelin entered the final keystroke at 1:10 a.m. on May 29. Lean compiled the proof, and it ran like a functioning program, verifying that Scholze’s work was 100% correct. Now Scholze and other mathematicians can apply those techniques from real functional analysis to condensed sets, knowing that they’ll definitely work in this new setting.

And while Scholze still prefers to work out proofs in his head, Lean’s abilities left him impressed. He can now foresee programs like it playing an enduring role in research mathematics.

“This experiment has changed drastically my impression of how capable [proof assistants] are,” Scholze said. “I now think it’s sensible in principle to formalize whatever you want in Lean. There’s no real obstruction.”

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.

Click here to access.

Source: https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/

Continue Reading

Quantum

Proof Assistant Makes Jump to Big-League Math

Published

on

Computer proof assistants have been an intriguing subplot in mathematics for years — promising to automate core aspects of the way mathematicians work, but in practice having little effect on the field.

But a new result, completed in early June, has the feel of a rookie’s first hit in the big leagues: At last, a proof assistant has made a real contribution to the leading edge of mathematical research by verifying the correctness of a complicated, modern proof.

“It demonstrates that modern maths can be formalized in a theorem prover,” said Bhavik Mehta, a graduate student at the University of Cambridge who contributed to the work.

The proof in question is by Peter Scholze of the University of Bonn, one of the most widely respected mathematicians in the world. It is just one piece of a larger project called “condensed mathematics” that he and Dustin Clausen of the University of Copenhagen have been working on for several years.

Their goal is to create new foundations for topology, replacing the traditional notion of a topological space — whose examples include the sphere and the doughnut — with more versatile objects that the authors call condensed sets. In this new perspective, topological spaces are thought of as being assembled from infinite points of dust glued together.

That project includes a particularly important, difficult proof that Scholze worked out himself during a consuming week in July 2019. It establishes that an area of math called real functional analysis still works if you replace topological spaces with condensed sets.

Scholze began the proof on a Monday. He worked entirely in his head, barely writing anything down, let alone using a computer. By Thursday afternoon he’d nearly figured it out, save one piece that he just couldn’t get right. He was also feeling the strain of the intense concentration required to hold such a complicated argument in his active memory. So that night he unwound with some friends at a bar. He paid for it the next morning, Friday.

“I was completely hungover,” said Scholze.

But he also knew that he wouldn’t have time to work over the weekend, making Friday his best chance to finish the proof. The thought of losing touch with everything he’d built up in his mind over the past week, then having to start again fresh on Monday, was more than he wanted to consider.

“I didn’t think I’d have the mental capacity to rebuild this in my head again,” said Scholze.

So he powered through and finished the proof. But afterward, he wasn’t certain that what he had done was correct. The reason was more than the hazy circumstances in which he’d cleared the final hurdle. The proof was so complicated Scholze knew it was possible he had missed something.

“It’s some very convoluted thing with many moving parts. It’s hard to know which parts move by how much when you shift one of these parameters,” said Scholze.

Scholze didn’t find time to actually write down the proof until November 2019. A year later he contacted Kevin Buzzard, a mathematician at Imperial College London and a prominent evangelist for a proof assistant program called Lean. Scholze wanted to know whether it would be possible to type his proof into Lean — turning it into lines of code like a software program — so that the program could verify whether it was really true.

Buzzard shared Scholze’s inquiry with a handful of other members of the Lean community including Johan Commelin, a postdoctoral researcher at the University of Freiburg. Commelin had the perfect background for the job — he’d been using Lean for several years and was familiar with condensed mathematics — and he was convinced that verifying Scholze’s proof would do a lot to legitimize the proof assistant’s standing in the mathematical community.

“Being able to collaborate with Peter on such a project and having his name attached to it would be an enormous boost for Lean,” said Commelin.

But he also thought it could take a year or more to do it, which gave him pause. Commelin was worried he might spend all that time verifying the proof and, at the end, the rest of the math world would just shrug.

“I thought that if I spend two years working on this and I come out of my cave and say, ‘This is fine,’ the rest of the world is going to say, ‘Wow, we already knew this, Peter proved it,’” said Commelin. It wouldn’t matter that Scholze himself wasn’t entirely sure.

So Commelin asked Scholze if he’d be willing to make a public statement vouching for the importance of the work. Scholze agreed, and on Dec. 5, 2020, he wrote a post on Buzzard’s blog.

They called it the “Liquid Tensor Experiment,” a nod to mathematical objects involved in the proof called liquid real vector spaces, and to a progressive rock band he and Commelin enjoy called Liquid Tension Experiment. In the 4,400-word primer, Scholze explained some technical aspects of the result and then added a note testifying in plain language to what he saw as the importance of checking it with a computer.

“I think this may be my most important theorem to date. (It does not really have any applications so far, but I’m sure this will change,)” Scholze wrote. “Better be sure it’s correct…”

Assurance in place, Commelin set to work. After explaining to Lean the mathematical statement whose proof he ultimately wanted the program to check, he brought more mathematicians into the project. They identified a few lemmas — intermediate steps in the proof — that seemed most approachable. They formalized those first, coding them on top of the library of mathematical knowledge that Lean draws on to determine if a given statement is true or not.

Last October, Quanta wrote that the collective effort to write mathematics in Lean has the “air of a barn raising.” This project was no different. Commelin would identify discrete parts of the proof and post them to Zulip, a discussion board that serves as a hub for the Lean community. When mathematicians saw a part of the proof that fit their expertise, they’d volunteer to formalize it.

Mehta was one of about a dozen mathematicians who contributed to the work. In May he saw a post from Commelin asking for help formalizing the proof of a statement called Gordan’s lemma, which related to Mehta’s work in the area of combinatorial geometry. He spent a week coding the proof in terms that were consistent with the larger proof the mathematicians were building. It was emblematic, he said, of the way Lean works.

“It’s one big collaboration with a lot of people doing what they’re good at to make a singular monolith,” he said.

As the work proceeded, Scholze was a consistent presence on Zulip, answering questions and explaining points of the proof — a bit like an architect giving directions to builders on a job site. “He was always within reach,” Commelin said.

At the end of May the group finished formalizing the one part of the proof Scholze was most unsure about. Commelin entered the final keystroke at 1:10 a.m. on May 29. Lean compiled the proof, and it ran like a functioning program, verifying that Scholze’s work was 100% correct. Now Scholze and other mathematicians can apply those techniques from real functional analysis to condensed sets, knowing that they’ll definitely work in this new setting.

And while Scholze still prefers to work out proofs in his head, Lean’s abilities left him impressed. He can now foresee programs like it playing an enduring role in research mathematics.

“This experiment has changed drastically my impression of how capable [proof assistants] are,” Scholze said. “I now think it’s sensible in principle to formalize whatever you want in Lean. There’s no real obstruction.”

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.

Click here to access.

Source: https://www.quantamagazine.org/lean-computer-program-confirms-peter-scholze-proof-20210728/

Continue Reading

Quantum

Quantum walk-based portfolio optimisation

Published

on

N. Slate, E. Matwiejew, S. Marsh, and J. B. Wang

Department of Physics, The University of Western Australia, Perth WA 6009, Australia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

This paper proposes a highly efficient quantum algorithm for portfolio optimisation targeted at near-term noisy intermediate-scale quantum computers. Recent work by Hodson et al. (2019) explored potential application of hybrid quantum-classical algorithms to the problem of financial portfolio rebalancing. In particular, they deal with the portfolio optimisation problem using the Quantum Approximate Optimisation Algorithm and the Quantum Alternating Operator Ansatz. In this paper, we demonstrate substantially better performance using a newly developed Quantum Walk Optimisation Algorithm in finding high-quality solutions to the portfolio optimisation problem.

► BibTeX data

► References

[1] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Comput., 26 (5): 1484–1509, 1997. 10.1137/​s0097539795293172.
https:/​/​doi.org/​10.1137/​s0097539795293172

[2] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, 2010. 10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[3] J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2: 79, 2018. 10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[4] P. Rebentrost and S. Lloyd. Quantum computational finance: quantum algorithm for portfolio optimization, 2018. URL https:/​/​arxiv.org/​abs/​1811.03975.
arXiv:1811.03975

[5] P. Rebentrost, B. Gupt, and T. R. Bromley. Quantum computational finance: Monte Carlo pricing of financial derivatives. Phys. Rev. A, 98: 022321, 2018. 10.1103/​PhysRevA.98.022321.
https:/​/​doi.org/​10.1103/​PhysRevA.98.022321

[6] R. Orús, S. Mugel, and E. Lizaso. Quantum computing for finance: Overview and prospects. Rev. Phys., 4: 100028, 2019. 10.1016/​j.revip.2019.100028.
https:/​/​doi.org/​10.1016/​j.revip.2019.100028

[7] S. Woerner and D. J. Egger. Quantum risk analysis. npj Quantum Inf., 5 (1), 2019. 10.1038/​s41534-019-0130-6.
https:/​/​doi.org/​10.1038/​s41534-019-0130-6

[8] M. Hodson, B. Ruck, H. Ong, D. Garvin, and S. Dulman. Portfolio rebalancing experiments using the Quantum Alternating Operator Ansatz, 2019. URL https:/​/​arxiv.org/​abs/​1911.05296.
arXiv:1911.05296

[9] H. Markowitz. Portfolio selection. J. Finance, 7 (1): 77–91, 1952. 10.1111/​j.1540-6261.1952.tb01525.x.
https:/​/​doi.org/​10.1111/​j.1540-6261.1952.tb01525.x

[10] A. Palczewski. LP algorithms for portfolio optimization: The PortfolioOptim package. R J., 10: 308–327, 2018. 10.32614/​RJ-2018-028.
https:/​/​doi.org/​10.32614/​RJ-2018-028

[11] R. Mansini and M. G. Speranza. Heuristic algorithms for the portfolio selection problem with minimum transaction lots. Eur. J. Oper. Res., 114 (2): 219–233, 1999. 10.1016/​S0377-2217(98)00252-5.
https:/​/​doi.org/​10.1016/​S0377-2217(98)00252-5

[12] T. F. Coleman, Y. Li, and J. Henniger. Minimizing tracking error while restricting the number of assets. J. Risk, 8: 33, 2006. 10.21314/​JOR.2006.134.
https:/​/​doi.org/​10.21314/​JOR.2006.134

[13] J. Cook, S. Eidenbenz, and A. Bärtschi. The Quantum Alternating Operator Ansatz on max-k vertex cover, 2019. URL https:/​/​arxiv.org/​abs/​1910.13483. 10.1109/​QCE49297.2020.00021.
https:/​/​doi.org/​10.1109/​QCE49297.2020.00021
arXiv:1910.13483

[14] E. Farhi and A. W. Harrow. Quantum supremacy through the Quantum Approximate Optimization Algorithm, 2016. URL https:/​/​arxiv.org/​abs/​1602.07674.
arXiv:1602.07674

[15] S. Marsh and J. B. Wang. Combinatorial optimization via highly efficient quantum walks. Phys. Rev. Research, 2: 023302, 2020. 10.1103/​PhysRevResearch.2.023302.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023302

[16] M. C. Steinbach. Markowitz revisited: Mean-variance models in financial portfolio analysis. SIAM Rev., 43 (1): 31–85, 2001. 10.1137/​S0036144500376650.
https:/​/​doi.org/​10.1137/​S0036144500376650

[17] K. P. Anagnostopoulos and G. Mamanis. The mean–variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms. Expert Syst. Appl., 38 (11): 14208–14217, 2011. 10.1016/​j.eswa.2011.04.233.
https:/​/​doi.org/​10.1016/​j.eswa.2011.04.233

[18] M. Bióna. Handbook of enumerative combinatorics. CRC Press, Boca Raton, 2015. 10.1201/​b18255.
https:/​/​doi.org/​10.1201/​b18255

[19] S. Hadfield, Z. Wang, B. O’Gorman, E. Rieffel, D. Venturelli, and R. Biswas. From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz. Algorithms, 12 (2): 34, 2019. 10.3390/​a12020034.
https:/​/​doi.org/​10.3390/​a12020034

[20] E. Farhi and S. Gutmann. Quantum computation and decision trees. Phys. Rev. A, 58: 915–928, 1998. 10.1103/​PhysRevA.58.915.
https:/​/​doi.org/​10.1103/​PhysRevA.58.915

[21] K. Manouchehri and J. B. Wang. Physical implementation of quantum walks. Springer, Heidelberg, 2014. 10.1007/​978-3-642-36014-5.
https:/​/​doi.org/​10.1007/​978-3-642-36014-5

[22] X. Qiang, T. Loke, A. Montanaro, K. Aungskunsiri, X. Zhou, J. L. O’Brien, J. B. Wang, and J. C. F. Matthews. Efficient quantum walk on a quantum processor. Nat. Commun., 7 (1): 11511, 2016. 10.1038/​ncomms11511.
https:/​/​doi.org/​10.1038/​ncomms11511

[23] A. Mahasinghe and J. B. Wang. Efficient quantum circuits for Toeplitz and Hankel matrices. J. Phys. A, 49 (27): 275301, 2016. 10.1088/​1751-8113/​49/​27/​275301.
https:/​/​doi.org/​10.1088/​1751-8113/​49/​27/​275301

[24] S. S. Zhou, T. Loke, J. A. Izaac, and J. B. Wang. Quantum Fourier transform in computational basis. Quantum Inf. Process., 16 (3): 82, 2017. 10.1007/​s11128-017-1515-0.
https:/​/​doi.org/​10.1007/​s11128-017-1515-0

[25] S. S. Zhou and J. B. Wang. Efficient quantum circuits for dense circulant and circulant-like operators. R. Soc. Open Sci., 4 (5, May): 160906, 12, 2017. 10.1098/​rsos.160906.
https:/​/​doi.org/​10.1098/​rsos.160906

[26] T. Loke and J. B. Wang. Efficient quantum circuits for Szegedy quantum walks. Ann. Phys., 382: 64–84, 2017a. 10.1016/​j.aop.2017.04.006.
https:/​/​doi.org/​10.1016/​j.aop.2017.04.006

[27] T. Loke and J. B. Wang. Efficient quantum circuits for continuous-time quantum walks on composite graphs. J. Phys. A, 50 (5): 055303, 2017b. 10.1088/​1751-8121/​aa53a9.
https:/​/​doi.org/​10.1088/​1751-8121/​aa53a9

[28] X. Qiang, X. Zhou, J. Wang, C. M. Wilkes, T. Loke, S. O’Gara, L. Kling, G. D. Marshall, R. Santagati, T. C. Ralph, J. B. Wang, J. L. O’Brien, M. G. Thompson, and J. C. F. Matthews. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics, 12 (9): 534–539, 2018. 10.1038/​s41566-018-0236-y.
https:/​/​doi.org/​10.1038/​s41566-018-0236-y

[29] C.-H. Yu, F. Gao, C. Liu, D. Huynh, M. Reynolds, and J. Wang. Quantum algorithm for visual tracking. Phys. Rev. A, 99: 022301, 2019. 10.1103/​PhysRevA.99.022301.
https:/​/​doi.org/​10.1103/​PhysRevA.99.022301

[30] R. Cleve and J. Watrous. Fast parallel circuits for the quantum Fourier transform. In Proceedings of SFCS 41, pages 526–536, 2000. 10.1109/​SFCS.2000.892140.
https:/​/​doi.org/​10.1109/​SFCS.2000.892140

[31] G. R. Ahokas. Improved algorithms for approximate quantum Fourier transforms and sparse Hamiltonian simulations. Master’s thesis, University of Calgary, 2004. URL https:/​/​dx.doi.org/​10.11575/​PRISM/​22839.
https:/​/​doi.org/​10.11575/​PRISM/​22839

[32] E. Matwiejew. QuOp_MPI: Parallel distributed memory simulation of Quantum Approximate Optimization Algorithms, 2020. URL https:/​/​doi.org/​10.5281/​zenodo.3681801.
https:/​/​doi.org/​10.5281/​zenodo.3681801

[33] E. Matwiejew and J. B. Wang. QSW_MPI: A framework for parallel simulation of quantum stochastic walks. Comput. Phys. Commun., 260: 107724, 2021. 10.1016/​j.cpc.2020.107724.
https:/​/​doi.org/​10.1016/​j.cpc.2020.107724

[34] W. McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, pages 56–61, 2010. 10.25080/​Majora-92bf1922-00a.
https:/​/​doi.org/​10.25080/​Majora-92bf1922-00a

[35] L. Han and M. Neumann. Effect of dimensionality on the Nelder–Mead simplex method. Optim. Methods Softw., 21 (1): 1–16, 2006. 10.1080/​10556780512331318290.
https:/​/​doi.org/​10.1080/​10556780512331318290

[36] C. Zalka. Grover’s quantum searching algorithm is optimal. Phys. Rev. A, 60: 2746–2751, 1999. 10.1103/​PhysRevA.60.2746.
https:/​/​doi.org/​10.1103/​PhysRevA.60.2746

[37] A. M. Childs and J. Goldstone. Spatial search by quantum walk. Phys. Rev. A, 70: 022314, 2004. 10.1103/​PhysRevA.70.022314.
https:/​/​doi.org/​10.1103/​PhysRevA.70.022314

[38] J. Roland and N. J. Cerf. Quantum-circuit model of Hamiltonian search algorithms. Phys. Rev. A, 68: 062311, 2003. 10.1103/​PhysRevA.68.062311.
https:/​/​doi.org/​10.1103/​PhysRevA.68.062311

[39] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman Problem: A Computational Study. Princeton University Press, USA, 2007. 10.1515/​9781400841103.
https:/​/​doi.org/​10.1515/​9781400841103

Cited by

Could not fetch Crossref cited-by data during last attempt 2021-07-28 10:24:54: Could not fetch cited-by data for 10.22331/q-2021-07-28-513 from Crossref. This is normal if the DOI was registered recently. On SAO/NASA ADS no data on citing works was found (last attempt 2021-07-28 10:24:55).

PlatoAi. Web3 Reimagined. Data Intelligence Amplified.
Click here to access.

Source: https://quantum-journal.org/papers/q-2021-07-28-513/

Continue Reading
AR/VR3 days ago

Review: Winds & Leaves

Esports5 days ago

Legends of Runeterra adding new Lab of Legends mode: The Saltwater Scourge

IOT5 days ago

The Current State of Indoor Positioning with IoT | Navigine’s Alexey Panyov and Elvina Sharafutdinova

Cleantech5 days ago

The Grim Reaper & The Republican Party Embracing Climate Action Are The Only Things That Will Eliminate US Climate Change Deniers

Esports4 days ago

New World Faction Armor Sets

Esports4 days ago

Are Splitgate’s servers down? Here’s how to check server status

Esports5 days ago

Best Build for Lucario in Pokemon UNITE

Esports5 days ago

How to level up every trade skill in New World

Esports5 days ago

Valorant PBE Server Status: How to Check

Blockchain4 days ago

DigiMax Expands Global Marketing into Asia with Signing of Collaboration Deal in Hong Kong

Esports5 days ago

Twitch and Facebook Gaming set new records, YouTube Gaming sees viewership decrease in Q2 2021

Energy5 days ago

Innovation at the Interconnection Solves Inrush Current Issue on PV Solar+Storage Site in NC

Esports5 days ago

Broken Blade talks about Schalke 04’s disappointing 2021 Summer Split, his responsibility as one of the older players on the roster

SPAC Insiders4 days ago

Mercury Ecommerce Acquisition Corp. (MEACU) Prices $175M IPO

Esports5 days ago

TSM and Gen.G VALORANT meet again in NA VCT Stage 3 Challengers 2 opener

Esports5 days ago

LCO caster Rusty condemns Chiefs Esports Club for ‘disrespectful’ behavior in week 7 win over Mammoth

Blockchain5 days ago

European Digital Identity: Talao Announces Professional Credential Solution

Energy5 days ago

Duke Energy helps build North Carolina workforce with $615,000 in grants to community colleges, HBCUs and nonprofits

Esports4 days ago

How Many People Can Play Tribes of Midgard Together?

AR/VR5 days ago

Oculus Quest 2 Sales Paused Until Late August Due to Facial Interface, Silicone Cover Incoming

Trending