Zephyrnet Logo

A tunable bilayer Hubbard model in twisted WSe2

Date:

  • Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Z. et al. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 16, 1093–1096 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Pan, H., Wu, F. & Das Sarma, S. Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii–Moriya interaction in twisted bilayer WSe2. Phys. Rev. Res. 2, 033087 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhai, D. & Yao, W. Theory of tunable flux lattices in the homobilayer moiré of twisted and uniformly strained transition metal dichalcogenides. Phys. Rev. Mater. 4, 094002 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Angeli, M. & MacDonald, A. H. Γ valley transition metal dichalcogenide moiré bands. Proc. Natl. Acad. Sci. USA 118, e2021826118 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xian, L. et al. Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2. Nat. Commun. 12, 5644 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y.-H., Sheng, D. N. & Vishwanath, A. SU(4) chiral spin liquid, exciton supersolid, and electric detection in moiré bilayers. Phys. Rev. Lett. 127, 247701 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Article 

    Google Scholar
     

  • Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Liu, G.-B., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y., Yuan, N. F. Q. & Fu, L. Moiré quantum chemistry: charge transfer in transition metal dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Pan, H., Wu, F. & Das Sarma, S. Quantum phase diagram of a Moiré–Hubbard model. Phys. Rev. B 102, 201104 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gu, J. et al. Dipolar excitonic insulator in a moire lattice. Nat. Phys. 18, 395–400 (2022).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Z. et al. Correlated interlayer exciton insulator in double layers of monolayer WSe2 and moiré WS2/WSe2. Preprint at https://arxiv.org/abs/2108.07131 (2021).

  • Li, T. et al. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Dalal, A. & Ruhman, J. Orbitally selective Mott phase in electron-doped twisted transition metal-dichalcogenides: a possible realization of the Kondo lattice model. Phys. Rev. Res. 3, 043173 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Ajesh K., Hu, N. C., MacDonald, A. H. & Potter, A. C. Gate-tunable heavy fermion quantum criticality in a moiré Kondo lattice. Preprint at https://arxiv.org/abs/2110.11962 (2021).

  • Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    Article 

    Google Scholar
     

  • Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    CAS 
    Article 

    Google Scholar
     

  • Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Tang, Y. et al. Dielectric catastrophe at the Mott and Wigner transitions in a moiré superlattice. Preprint at https://arxiv.org/abs/2201.12510 (2022).

  • Xian, L. et al. Engineering three-dimensional moiré flat bands. Nano Lett. 21, 7519–7526 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Y.-H. & Vishwanath, A. Electrical detection of spin liquids in double moiré layers. Preprint at https://arxiv.org/abs/2005.12925 (2020).

  • Kim, K. et al. van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Chung, T.-F., Xu, Y. & Chen, Y. P. Transport measurements in twisted bilayer graphene: electron–phonon coupling and Landau level crossing. Phys. Rev. B 98, 035425 (2018).

    CAS 
    Article 

    Google Scholar
     

  • spot_img

    Latest Intelligence

    spot_img