Zephyrnet Logo

A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells

Date:

  • 1.

    Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).

    CAS  Article  Google Scholar 

  • 2.

    Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    CAS  Article  Google Scholar 

  • 3.

    Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    CAS  Article  Google Scholar 

  • 4.

    Shackleton, M., Quintana, E., Fearon, E. R. & Morrison, S. J. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822–829 (2009).

    CAS  Article  Google Scholar 

  • 5.

    Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21, 283–296 (2012).

    CAS  Article  Google Scholar 

  • 6.

    Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

    Article  Google Scholar 

  • 7.

    Baumann, M., Krause, M. & Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545–554 (2008).

    CAS  Article  Google Scholar 

  • 8.

    Shlush, L. I. et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547, 104–148 (2017).

    CAS  Article  Google Scholar 

  • 9.

    Ye, X. et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525, 256–260 (2015).

    CAS  Article  Google Scholar 

  • 10.

    Lathia, J. D., Mack, S. C., Mulkearns-Hubert, E. E., Valentim, C. L. & Rich, J. N. Cancer stem cells in glioblastoma. Genes Dev. 29, 1203–1217 (2015).

    CAS  Article  Google Scholar 

  • 11.

    Zeuner, A., Todaro, M., Stassi, G. & De Maria, R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 15, 692–705 (2014).

    CAS  Article  Google Scholar 

  • 12.

    Pece, S. et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140, 62–73 (2010).

    CAS  Article  Google Scholar 

  • 13.

    Eramo, A. et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15, 504–514 (2008).

    CAS  Article  Google Scholar 

  • 14.

    Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B. & Farrar, W. L. CD44+CD24 prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer 98, 756–765 (2008).

    CAS  Article  Google Scholar 

  • 15.

    Saygin, C., Matei, D., Majeti, R., Reizes, O. & Lathia, J. D. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24, 25–40 (2019).

    CAS  Article  Google Scholar 

  • 16.

    de Thé, H Differentiation therapy revisited. Nat. Rev. Cancer 18, 117–127 (2018).

    Article  CAS  Google Scholar 

  • 17.

    Hu, J. et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 106, 3342–3347 (2009).

    CAS  Article  Google Scholar 

  • 18.

    Piccirillo, S. G. et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444, 761–765 (2006).

    CAS  Article  Google Scholar 

  • 19.

    Yoldi, G. et al. RANK signaling blockade reduces breast cancer recurrence by inducing tumor cell differentiation. Cancer Res. 76, 5857–5869 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Shimokawa, M. et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature 545, 187–192 (2017).

    CAS  Article  Google Scholar 

  • 21.

    Ginestier, C. et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 8, 3297–3302 (2009).

    CAS  Article  Google Scholar 

  • 22.

    Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    CAS  Article  Google Scholar 

  • 23.

    Samanta, D., Gilkes, D. M., Chaturvedi, P., Xiang, L. & Semenza, G. L. Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc. Natl Acad. Sci. USA 111, E5429–E5438 (2014).

    CAS  Article  Google Scholar 

  • 24.

    Wang, C. et al. Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncol. Rep. 28, 1301–1308 (2012).

    CAS  Article  Google Scholar 

  • 25.

    Zheng, X., Cui, D., Xu, S., Brabant, G. & Derwahl, M. Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: characterization of resistant cells. Int. J. Oncol. 37, 307–315 (2010).

    CAS  Article  Google Scholar 

  • 26.

    Li, Y., Atkinson, K. & Zhang, T. Combination of chemotherapy and cancer stem cell targeting agents: preclinical and clinical studies. Cancer Lett. 396, 103–109 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Dicko, A., Mayer, L. D. & Tardi, P. G. Use of nanoscale delivery systems to maintain synergistic drug ratios in vivo. Expert Opin. Drug Deliv. 7, 1329–1341 (2010).

    CAS  Article  Google Scholar 

  • 28.

    Sun, R. et al. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 37, 405–414 (2015).

    CAS  Article  Google Scholar 

  • 29.

    Mu, L. M. et al. Development of functional dendrisomes based on a single molecule of polyesterbenzylether dendrimer and their application in cancer stem cell therapy. NPG Asia Mater. 11, 1–16 (2019).

    Article  Google Scholar 

  • 30.

    Sengupta, S. et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436, 568–572 (2005).

    CAS  Article  Google Scholar 

  • 31.

    Kolishetti, N. et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc. Natl Acad. Sci. USA 107, 17939–17944 (2010).

    CAS  Article  Google Scholar 

  • 32.

    Pouyssegur, J., Dayan, F. & Mazure, N. M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437–443 (2006).

    CAS  Article  Google Scholar 

  • 33.

    Borovski, T., Felipe De Sousa, E. M., Vermeulen, L. & Medema, J. P. Cancer stem cell niche: the place to be. Cancer Res. 71, 634–639 (2011).

    CAS  Article  Google Scholar 

  • 34.

    Mohyeldin, A., Garzon-Muvdi, T. & Quinones-Hinojosa, A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 7, 150–161 (2010).

    CAS  Article  Google Scholar 

  • 35.

    Yu, J. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    CAS  Article  Google Scholar 

  • 36.

    Gudas, L. J. & Wagner, J. A. Retinoids regulate stem cell differentiation. J. Cell. Physiol. 226, 322–330 (2011).

    CAS  Article  Google Scholar 

  • 37.

    Saravanakumar, G., Kim, J. & Kim, W. J. Reactive-oxygen-species-responsive drug delivery systems: Promises and challenges. Adv. Sci. 4, 1600124 (2017).

    Article  CAS  Google Scholar 

  • 38.

    Shi, X., Zhang, Y., Zheng, J. & Pan, J. Reactive oxygen species in cancer stem cells. Antioxid. Redox Signal. 16, 1215–1228 (2012).

    CAS  Article  Google Scholar 

  • 39.

    Diehn, M. et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783 (2009).

    CAS  Article  Google Scholar 

  • 40.

    Saretzki, G. et al. Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells 26, 455–464 (2008).

    CAS  Article  Google Scholar 

  • 41.

    Ye, X. Q. et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int. J. Cancer 129, 820–831 (2011).

    CAS  Article  Google Scholar 

  • 42.

    Kobayashi, C. I. & Suda, T. Regulation of reactive oxygen species in stem cells and cancer stem cells. J. Cell. Physiol. 227, 421–430 (2012).

    CAS  Article  Google Scholar 

  • 43.

    Liou, G.-Y. & Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 44, 479–496 (2010).

    CAS  Article  Google Scholar 

  • 44.

    Wang, Q., Yang, W., Uytingco, M. S., Christakos, S. & Wieder, R. 1,25-Dihydroxyvitamin D3 and all-trans-retinoic acid sensitize breast cancer cells to chemotherapy-induced cell death. Cancer Res. 60, 2040–2048 (2000).

    CAS  Google Scholar 

  • 45.

    Bertozzi, D. et al. The natural inhibitor of DNA topoisomerase I, camptothecin, modulates HIF-1α activity by changing miR expression patterns in human cancer cells. Mol. Cancer Ther. 13, 239–248 (2014).

    CAS  Article  Google Scholar 

  • 46.

    Baranello, L., Bertozzi, D., Fogli, M. V., Pommier, Y. & Capranico, G. DNA topoisomerase I inhibition by camptothecin induces escape of RNA polymerase II from promoter-proximal pause site, antisense transcription and histone acetylation at the human HIF-1α gene locus. Nucleic Acids Res. 38, 159–171 (2009).

    Article  CAS  Google Scholar 

  • 47.

    Hirschmann-Jax, C. et al. A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells. Proc. Natl Acad. Sci. USA 101, 14228–14233 (2004).

    CAS  Article  Google Scholar 

  • 48.

    Ginestier, C. et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1, 555–567 (2007).

    CAS  Article  Google Scholar 

  • 49.

    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    CAS  Article  Google Scholar 

  • 50.

    Sato, A. et al. Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells. Stem Cell Res. 12, 119–131 (2014).

    CAS  Article  Google Scholar 

  • 51.

    Owusu-Ansah, E. & Banerjee, U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537–541 (2009).

    CAS  Article  Google Scholar 

  • 52.

    Topaly, J., Zeller, W. J. & Fruehauf, S. Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia 15, 342–347 (2001).

    CAS  Article  Google Scholar 

  • 53.

    Thambi, T. et al. Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 35, 1735–1743 (2014).

    CAS  Article  Google Scholar 

  • 54.

    Sarkadi, B., Homolya, L., Szakacs, G. & Varadi, A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol. Rev. 86, 1179–1236 (2006).

    CAS  Article  Google Scholar 

  • 55.

    Peach, R. J., Hollenbaugh, D., Stamenkovic, I. & Aruffo, A. Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J. Cell Biol. 122, 257–264 (1993).

    CAS  Article  Google Scholar 

  • Source: https://www.nature.com/articles/s41565-020-00793-0

    spot_img

    Latest Intelligence

    spot_img

    Chat with us

    Hi there! How can I help you?