Connect with us

Nano Technology

A low-temperature bubble-generating system for enhanced surface capture of proteins

Avatar

Published

on


Jul 27, 2020 (Nanowerk Spotlight) A large variety of measurements in nanotechnology and the life sciences requires analytes in solution to react with receptors immobilized on a surface. The diffusional transport of biomolecules to a substrate is one of the factors that determines sensing performance of this kind of surface-based biosensing. In the quest to miniaturize sensors and analyte volumes – ultimately down to the nanoscale – as well as increase speed and sensitivity of the results, researchers have explored and developed a variety of platforms. One of them is optothermal microbubble assisted bio-sensing. Convective fluid flow generated by an optically controlled surface microbubble is a fascinating phenomenon for overcoming the diffusion limit in surface-based biosensing. The irradiation of a plasmonic substrate with a focused laser beam at the plasmon resonance wavelength generates microbubbles at the substrate-solution interface (read more: “Nanotechnology in a bubble“). These microbubbles can quickly accumulate solutes at the bubble-liquid-substrate interface due to high-velocity fluid flows. However, the high temperature of above 100 °C required for producing water bubbles has limited this technique’s sensing applications to only certain target biomolecules. For instance, it is not suitable for sensing proteins that are subject to thermal denaturation. Motivated by the question of how to reduce and modulate the working temperature of bubble-generating systems from a material perspective, a team of researchers at The University of Texas at Austin have demonstrated a proof-of-concept study that reduces the working temperature of bubble generation simply by introducing a volatile, water-immiscible liquid into an aqueous medium. They published their findings in Nano Letters (“Enhancing Surface Capture and Sensing of Proteins with Low-Power Optothermal Bubbles in a Biphasic Liquid”). “Here, we demonstrate a biphasic system that generates microbubbles at a low optical power/temperature, thus enabling its application to protein sensing,” Youngsun Kim, a member of Yuebing Zheng’s research group and the paper’s first author, tells Nanowerk. “Specifically, we describe the capability of a bubble, generated from a perfluoropentane (PFP)-in-water biphasic liquid, as an in situ concentrator in surface-based biosensing.” By introducing a biphasic liquid system wherein a volatile, water-immiscible liquid (PFP) is formulated into an aqueous medium, the researchers were able to generate bubbles at a much lower temperature of around 30 °C – compared to over 100 °C for water bubbles – not only making this sensing platform compatible with proteins but also enhancing the surface capture of proteins. text Scheme of bubble-enhanced surface capture of proteins and description of biphasic fluid. Left: Schematic illustration of the bubble-generating perfluoropentane (PFP)-in-water system and, right: bubble-mediated concentration of target proteins near the bubble-liquid-substrate interface. Arrows in panel a indicate the expansion of the PFP droplet into the bubble. (Reprinted with permission by American Chemical Society) (click on image to enlarge) “We were able to reduce the threshold optical power for bubble generation to 33% of that in a pure aqueous medium,” Kim points out. “The generated bubble was able to induce Marangoni flow due to a surface tension gradient, which was large enough to accumulate proteins from the bulk solution near the bubble-liquid-substrate interface. We observed one-order-of magnitude enhancement of surface capture within 1 minute in a single antigen-antibody model, compared to that from diffusion-limited static incubation for 30 minutes.” One of the benefits of this concept is that the working temperature can be tuned simply by varying the components of the biphasic liquid, leading to its wide applicability in biosensing. “One of the merits of the bubble-based approach, composed of fluid formulation and an optothermal add-on, resides in its compatibility with conventional surface-based assay platforms,” Kim notes. “Given the working mode of our concept, the same method can be sequentially applied to multiple steps of solution-to-surface conjugation as in sandwich-type ELISA, e.g., capture antibody/antigen, antigen/probe antibody, probe antibody/secondary antibody, and enzyme/substrate.” Consequently, the team now plans to integrate the biphasic bubble-generating system into standard surface-based biosensing such as an enzyme-linked immunosorbent assay (ELISA). They expect a collective improvement of sensitivity and throughput performance resulting from enhancements in binding events at multiple steps of ELISA. Overall, the present study could find a wider range of scientific and clinical applications in biosensing when combined with rational designs of sensor configurations. It also suggests a way toward improving the performance of sensor and spectroscopy applications. By
Michael is author of three books by the Royal Society of Chemistry:
Nano-Society: Pushing the Boundaries of Technology,
Nanotechnology: The Future is Tiny, and
Nanoengineering: The Skills and Tools Making Technology Invisible
Copyright ©




Nanowerk

Source: https://feeds.nanowerk.com/~/631564842/0/nanowerknanotechnologyspotlight~A-lowtemperature-bubblegenerating-system-for-enhanced-surface-capture-of-proteins.php

Nano Technology

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline

Avatar

Published

on

Home > Press > SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline

Abstract:
SEMI, the industry association serving the global electronics design and manufacturing supply chain, today launched a new collaborative apprenticeship program to make it easier for companies to offer training and for more workers to pursue careers in electronics. The competency-based SEMI Industry Approved Apprenticeship Program (IAAP) is designed to identify skills gaps and deliver targeted training that efficiently meets industry employers’ hiring needs.

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline


Milpitas, CA | Posted on August 11th, 2020

SEMI developed the IAAP in partnership with GLOBALFOUNDRIES® (GF®), the largest pure-play semiconductor foundry in the U.S. and the world’s leading specialty foundry. Designed to be scaled to meet industry demand for technicians, the program leverages SEMI’s Unified Competency Model (UCM), which was formed with industry input as a new skills standard and is endorsed by the U.S. Department of Labor Employment and Training Administration (USDOL-ETA). The UCM is posted on DOL-ETA’s Competency Model Clearinghouse.
“GLOBALFOUNDRIES has long been committed to building educational partnerships that benefit both our employees and the region, particularly in developing a highly skilled workforce to ensure our industry and the U.S. remains at the forefront of innovation for years to come,” said Ron Sampson, senior vice president and general manager of U.S. Fab Operations at GF. “Through SEMI’s new Industry Approved Apprenticeship Program, we look forward to helping our employees advance their careers, while playing an important role in workforce training and boosting the semiconductor manufacturing talent pool.”

“The IAAP is designed to help the microelectronics industry and advanced manufacturers overcome the talent shortage by enabling companies to fill skills gaps more effectively and at lower cost,” said Mike Russo, vice president of Industry Advancement and Government Programs at SEMI. “SEMI will continue to work to ensure the IAAP lays a path for employers to pursue government-registered apprenticeship programs and qualify for reimbursement of related training expenses.”

Hudson Valley Community College (HVCC) will offer the apprenticeship program courses, the first certified under the SEMI Certs program, online. The course curriculum is aligned with UCM to ensure course curriculum supports the development of skills required by the electronics industry.

“We are excited to be a partner in this pilot program that is expected to graduate approximately 50 apprentices by the end of this year and more than 100 apprentices by the end of 2021,” said Roger Ramsammy, president of Hudson Valley Community College. “Hudson Valley’s participation in the SEMI Certs program has ensured our courses are aligned with industry requirements and that participants receive college credits to help them pursue related degrees and support career laddering. In addition, we hope the program will ultimately be a New York State Registered Apprenticeship Program, providing access to tuition reimbursement for Required Technical Training.”

Along with GLOBALFOUNDRIES and HVCC, SEMI partnered with SUNY Polytechnic Institute, the Manufacturing Association of Central New York (MACNY) and the Center for Economic Growth (CEG), a nonprofit economic and business development organization that serves as the primary point of contact for businesses interested in growing in or moving to New York’s eight-county capital region, to develop the apprenticeship program.

The apprentice program marks a milestone in the evolution of SEMI Works™, the first U.S. electronics workforce development program developed under a partnership with the National Science Foundation Advanced Technological Education (NSF-ATE) Program, the USDOL-ETA and academic partner SUNY Polytechnic Institute in New York.

####

About SEMI
SEMI® connects more than 2,400 member companies and 1.3 million professionals worldwide to advance the technology and business of electronics design and manufacturing. SEMI members are responsible for the innovations in materials, design, equipment, software, devices, and services that enable smarter, faster, more powerful, and more affordable electronic products. Electronic System Design Alliance (ESD Alliance), FlexTech, the Fab Owners Alliance (FOA) and the MEMS & Sensors Industry Group (MSIG) are SEMI Strategic Technology Communities, defined communities within SEMI focused on specific technologies. Visit www.semi.org to learn more, contact one of our worldwide offices, and connect with SEMI on LinkedIn and Twitter.

For more information, please click here

Contacts:
Michael Hall/SEMI

Phone: 1.408.943.7988

Copyright © SEMI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs August 11th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020

Jobs

March 17th, 2020

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) March 29th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) December 18th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Possible Futures

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs August 11th, 2020

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells – research has implications for improvements in a wide range of technologies August 7th, 2020

High-sensitivity atomic force microscopy opens up for photosensitive materials August 7th, 2020

Researchers capture X-ray images with unprecedented speed and resolution: Ghost imaging approach could enable detailed movies of the heart with low-dose x-rays August 7th, 2020

Announcements

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs August 11th, 2020

High-sensitivity atomic force microscopy opens up for photosensitive materials August 7th, 2020

Researchers capture X-ray images with unprecedented speed and resolution: Ghost imaging approach could enable detailed movies of the heart with low-dose x-rays August 7th, 2020

Alliances/Trade associations/Partnerships/Distributorships

EU Team Demonstrates Full Data-Transfer Silicon Photonics Module Delivering 100 Gb/s and Develops Building Blocks for Tb/s: COSMICC Project Breakthroughs ‘Will Answer Tremendous Market Needs with a Target Cost per Bit that Traditional Wavelength-Division Multiplexing Transceivers June 23rd, 2020

BNNano and Ruhl Strategic Partners Align for Nanotube Market Growth Ruhl to Leverage Strategic Acumen and Ecosystem Network of Advanced Materials & Technology Companies to Accelerate Growth for BNNano March 9th, 2020

New European Project to Fast-Track Adoption Of Cyber-Physical Systems (CPS) by SMEs: DigiFed to Demonstrate Potential of CPS Digital Technologies in Hardware Security, Human-Machine Interaction, and Autonomy for Small & Midsized Companies January 29th, 2020

American Chemical Society names Dr. James Milne head of its Publications Division January 24th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56291

Continue Reading

Nano Technology

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs

Avatar

Published

on

Home > Press > Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs

Fisher Yu, University of Arkansas CREDIT
University of Arkansas
Fisher Yu, University of Arkansas CREDIT
University of Arkansas

Abstract:
Materials science researchers, led by electrical engineering professor Shui-Qing “Fisher” Yu, have demonstrated the first electrically injected laser made with germanium tin.

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs


Fayetteville, AR | Posted on August 11th, 2020

Used as a semiconducting material for circuits on electronic devices, the diode laser could improve micro-processing speed and efficiency at much lower costs.

In tests, the laser operated in pulsed conditions up to 100 kelvins, or 279 degrees below zero Fahrenheit.

“Our results are a major advance for group-IV-based lasers,” Yu said. “They could serve as the promising route for laser integration on silicon and a major step toward significantly improving circuits for electronics devices.”

The research is sponsored by the Air Force Office of Scientific Research, and the findings have been published in Optica, the journal of The Optical Society. Yiyin Zhou, a U of A doctoral student in the microelectronics-photonics program authored the article. Zhou and Yu worked with colleagues at several institutions, including Arizona State University, the University of Massachusetts Boston, Dartmouth College in New Hampshire and Wilkes University in Pennsylvania. The researchers also collaborated with Arktonics, an Arkansas semiconductor equipment manufacturer.

The alloy germanium tin is a promising semiconducting material that can be easily integrated into electronic circuits, such as those found in computer chips and sensors. The material could lead to the development of low-cost, lightweight, compact and low power-consuming electronic components that use light for information transmission and sensing.

Yu has worked with germanium tin for many years. Researchers in his laboratory have demonstrated the material’s efficacy as a powerful semiconducting alloy. After reporting the fabrication of a first-generation, “optically pumped” laser, meaning the material was injected with light, Yu and researchers in his laboratory continue to refine the material.

####

For more information, please click here

Contacts:
Fisher Yu
479-575-7265

Copyright © University of Arkansas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline August 11th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020

Possible Futures

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline August 11th, 2020

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells – research has implications for improvements in a wide range of technologies August 7th, 2020

High-sensitivity atomic force microscopy opens up for photosensitive materials August 7th, 2020

Researchers capture X-ray images with unprecedented speed and resolution: Ghost imaging approach could enable detailed movies of the heart with low-dose x-rays August 7th, 2020

Chip Technology

Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020

Tiniest secrets of integrated circuits revealed with new imaging technique August 5th, 2020

When Dirac meets frustrated magnetism August 3rd, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Optical computing/Photonic computing

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells – research has implications for improvements in a wide range of technologies August 7th, 2020

Photochromic bismuth complexes show great promise for optical memory elements July 24th, 2020

Scaling up the quantum chip: MIT engineers develop a hybrid process that connects photonics with ‘artificial atoms,’ to produce the largest quantum chip of its type July 10th, 2020

A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

Sensors

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

Solid-state intramolecular motions in continuous fibers for fluorescent humidity sensor July 16th, 2020

Single-spin electron paramagnetic resonance spectrum with kilohertz spectral resolution June 19th, 2020

Discoveries

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells – research has implications for improvements in a wide range of technologies August 7th, 2020

High-sensitivity atomic force microscopy opens up for photosensitive materials August 7th, 2020

Researchers capture X-ray images with unprecedented speed and resolution: Ghost imaging approach could enable detailed movies of the heart with low-dose x-rays August 7th, 2020

Announcements

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline August 11th, 2020

High-sensitivity atomic force microscopy opens up for photosensitive materials August 7th, 2020

Researchers capture X-ray images with unprecedented speed and resolution: Ghost imaging approach could enable detailed movies of the heart with low-dose x-rays August 7th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions August 11th, 2020

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells – research has implications for improvements in a wide range of technologies August 7th, 2020

High-sensitivity atomic force microscopy opens up for photosensitive materials August 7th, 2020

Researchers capture X-ray images with unprecedented speed and resolution: Ghost imaging approach could enable detailed movies of the heart with low-dose x-rays August 7th, 2020

Photonics/Optics/Lasers

Layer of nanoparticles could improve LED performance and lifetime August 7th, 2020

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells – research has implications for improvements in a wide range of technologies August 7th, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Project creates more powerful, versatile ultrafast laser pulse: Institute of Optics research sets record for shortest laser pulse for newly developed technology, work that has important applications in engineering and biomedicine July 24th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56292

Continue Reading

Nano Technology

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions

Avatar

Published

on

Home > Press > Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions

Rods of multivariate MOFs (left) can be programmed with different metal atoms (colored balls) to do a series of chemical tasks, such as controlled drug release, or to encode information like the ones and zeros in a digital computer. CREDIT
UC Berkeley image by Omar Yaghi and Zhe Ji
Rods of multivariate MOFs (left) can be programmed with different metal atoms (colored balls) to do a series of chemical tasks, such as controlled drug release, or to encode information like the ones and zeros in a digital computer. CREDIT
UC Berkeley image by Omar Yaghi and Zhe Ji

Abstract:
Artificial molecules could one day form the information unit of a new type of computer or be the basis for programmable substances. The information would be encoded in the spatial arrangement of the individual atoms – similar to how the sequence of base pairs determines the information content of DNA, or sequences of zeros and ones form the memory of computers.

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions


Berkeley, CA | Posted on August 11th, 2020

Researchers at the University of California, Berkeley, and Ruhr-Universität Bochum (RUB) have taken a step towards this vision. They showed that atom probe tomography can be used to read a complex spatial arrangement of metal ions in multivariate metal-organic frameworks.

Metal-organic frameworks (MOFs) are crystalline porous networks of multi-metal nodes linked together by organic units to form a well-defined structure. To encode information using a sequence of metals, it is essential to be first able to read the metal arrangement. However, reading the arrangement was extremely challenging. Recently, the interest in characterizing metal sequences is growing because of the extensive information such multivariate structures would be able to offer.

Fundamentally, there was no method to read the metal sequence in MOFs. In the current study, the research team has successfully done so by using atom probe tomography (APT), in which the Bochum-based materials scientist Tong Li is an expert. The researchers chose MOF-74, made by the Yaghi group in 2005, as an object of interest. They designed the MOFs with mixed combinations of cobalt, cadmium, lead, and manganese, and then decrypted their spatial structure using APT.

Li, professor and head of the Atomic-Scale Characterisation research group at the Institute for Materials at RUB, describes the method together with Dr. Zhe Ji and Professor Omar Yaghi from UC Berkeley in the journal Science, published online on August 7, 2020.

Just as sophisticated as biology

In the future, MOFs could form the basis of programmable chemical molecules: for instance, an MOF could be programmed to introduce an active pharmaceutical ingredient into the body to target infected cells and then break down the active ingredient into harmless substances once it is no longer needed. Or MOFs could be programmed to release different drugs at different times.

“This is very powerful, because you are basically coding the behavior of molecules leaving the pores,” Yaghi said.

They could also be used to capture CO2 and, at the same time, convert the CO2 into a useful raw material for the chemical industry.

“In the long term, such structures with programmed atomic sequences can completely change our way of thinking about material synthesis,” write the authors. “The synthetic world could reach a whole new level of precision and sophistication that has previously been reserved for biology.”

###

The work was supported by the Center of Excellence for Nanomaterials and Clean Energy Applications at King Abdulaziz City for Science and Technology.

####

For more information, please click here

Contacts:
Robert Sanders
510-915-3097

@UCBerkeley

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs August 11th, 2020

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline August 11th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020

Chemistry

Kavli Lectures: The art of building small and innovating for industrial impact August 7th, 2020

Sustainable chemistry at the quantum level: University of Pittsburgh’s John Keith explores the sustainable potential of computational quantum chemistry August 6th, 2020

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

Synthetic Biology

Machine learning reveals recipe for building artificial proteins July 24th, 2020

SUWA: A hyperstable artificial protein that does not denature in high temperatures above 100°C February 28th, 2020

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Discoveries

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs August 11th, 2020

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells – research has implications for improvements in a wide range of technologies August 7th, 2020

High-sensitivity atomic force microscopy opens up for photosensitive materials August 7th, 2020

Researchers capture X-ray images with unprecedented speed and resolution: Ghost imaging approach could enable detailed movies of the heart with low-dose x-rays August 7th, 2020

Announcements

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs August 11th, 2020

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline August 11th, 2020

High-sensitivity atomic force microscopy opens up for photosensitive materials August 7th, 2020

Researchers capture X-ray images with unprecedented speed and resolution: Ghost imaging approach could enable detailed movies of the heart with low-dose x-rays August 7th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs August 11th, 2020

May the force be with you: Detecting ultrafast light by its force: From cell phones to solar cells – research has implications for improvements in a wide range of technologies August 7th, 2020

High-sensitivity atomic force microscopy opens up for photosensitive materials August 7th, 2020

Researchers capture X-ray images with unprecedented speed and resolution: Ghost imaging approach could enable detailed movies of the heart with low-dose x-rays August 7th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

‘Blinking” crystals may convert CO2 into fuels: Unusual nanoparticles could benefit the quest to build a quantum computer July 17th, 2020

Membrane technology could cut emissions and energy use in oil refining July 17th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56293

Continue Reading
Nano Technology13 hours ago

SEMI Partners with GLOBALFOUNDRIES to Offer Apprenticeship Program Aimed at Building the Electronics Talent Pipeline

Fisher Yu, University of Arkansas CREDIT University of Arkansas
Nano Technology13 hours ago

Materials science researchers develop first electrically injected laser: The diode laser uses semiconducting material germanium tin and could improve micro-processing speed and efficiency at much lower costs

Nano Technology13 hours ago

Advance in programmable synthetic materials: Reading sequence of metal atoms in MOFs allows encoding of multiple chemical functions

Blockchain13 hours ago

Invest 3% in Bitcoin to Avoid COVID-19 Lockdown Devaluation — BitGo CEO

Blockchain13 hours ago

Cointelegraph Launches Newsletter for Professional Investors

Blockchain13 hours ago

Bitcoin Cash short-term Price Analysis: 12 August

Blockchain14 hours ago

Token Launches From Ethereum to Telegram: Where Do We Go From Here?

AR/VR14 hours ago

Enterprise VR Hardware Specialist Varjo Raises $54 Million in Latest Funding Round

Blockchain14 hours ago

Grayscale Bitcoin Trust Saw Surge in Investor Interest After March

Blockchain14 hours ago

VeChain & Oxford Announce New Framework to Assess Consensus Protocols

Blockchain14 hours ago

Championing Blockchain Education in Africa: Women Leading the Bitcoin Cause

Gaming15 hours ago

Evening Reading – August 11, 2020

Blockchain15 hours ago

Chainlink: Traders under zero loss, but why?

Blockchain16 hours ago

The Babylon Project: A Blockchain Focused Hackathon with a Commitment to Diversity & Inclusion

AR/VR16 hours ago

Varjo Raises $54M Financing to Support Its Retina-Quality VR/AR Headsets for Enterprise

Blockchain16 hours ago

Ethereum, Zcash, Dogecoin Price Analysis: 12 August

Blockchain16 hours ago

Peer-to-Peer Exchange CryptoLocally Now Offers Instant Credit Card Payment

Blockchain17 hours ago

Cardano (ADA) Holds On to Crucial Support By a Thread

Blockchain18 hours ago

Bitcoin Creates Double-Top After Failing Close Above $12,000

Blockchain18 hours ago

DeFi Farmers Rush to Yam and Serum for Explosive Yields

Energy19 hours ago

Copper Foil Market Size Worth $10.3 Billion By 2027 | CAGR: 9.7%: Grand View Research, Inc.

Energy20 hours ago

Corundum Market Size Worth $3.5 Billion By 2027 | CAGR: 4.0%: Grand View Research, Inc.

AR/VR20 hours ago

Mozilla is Shuttering its XR Team Amidst Major Layoff, But ‘Hubs’ Will Continue

Energy21 hours ago

New Energy Challenger, Rebel Energy, Places Blue Prism Digital Workers at the Heart of its Launch Plans

Science21 hours ago

Teknosa grows by 580 percent in e-commerce and pulls its operating profit into positive territory in Q2, despite the pandemic

Science21 hours ago

Novo Ventures Portfolio Company F2G Closes US$60.8 Million Financing

Science21 hours ago

F2G Closes US$60.8 Million Financing to fund late stage development of novel mechanism antifungal agent

Blockchain21 hours ago

LocalCryptos Integrates Inbuilt Crypto-To-Crypto Exchanges, Powered by ChangeNOW

Publications21 hours ago

Putin’s plan for Russia’s coronavirus vaccine is at ‘high risk of backfiring,’ expert says

Publications21 hours ago

UK enters recession after GDP plunged by a record 20.4% in the second quarter

Gaming21 hours ago

Another Steam Game Festival Is Coming In October

Science22 hours ago

Top 25 Nationally Ranked Carr, Riggs & Ingram (CRI) Welcomes Cookeville-Based Firm, Duncan, Wheeler & Wilkerson, P.C.

Science22 hours ago

Avast plc Half Year Results For The Six-Months Ended 30 June 2020

Cyber Security22 hours ago

Russian hackers steal Prince Harry and Meghan Markle photos via Cyber Attack

Gaming22 hours ago

Oddworld: New ‘N Tasty Coming To Switch In October

Gaming22 hours ago

Linkin Park’s Mike Shinoda Is Writing A Song For Gamescom 2020

Cyber Security22 hours ago

Texas School District experiences DDoS Cyber Attack

Gaming22 hours ago

‘EVE: Echoes’ from CCP Games and Netease Is Now Available Early on the App Store, Servers Go Live Tomorrow

Gaming22 hours ago

Hans Zimmer Created An Extended Netflix “Ta Dum” Sound For Theatres

Cannabis22 hours ago

Everything you need to know about the Exxus Snap VV

Trending