Zephyrnet Logo

Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread

Date:

Home > Press > Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread

The National Institutes of Health is backing a Rice University project to continue the development of flexible nanoelectronic thread to gather information from neurons. The miniaturized implants could ultimately help find therapies for neurological disorders. (Credit: Xie Laboratory/Rice University)
The National Institutes of Health is backing a Rice University project to continue the development of flexible nanoelectronic thread to gather information from neurons. The miniaturized implants could ultimately help find therapies for neurological disorders. (Credit: Xie Laboratory/Rice University)

Abstract:
University engineers will gain a better understanding of brain activity over time with the support of the National Institutes of Health.

Gentle probes could enable massive brain data collection: National Institutes of Health backing Rice’s Chong Xie to refine flexible nanoelectronics thread


Houston, TX | Posted on September 14th, 2020

The agency has awarded a four-year grant of $4.15 million to Chong Xie of the Brown School of Engineering’s Neuroengineering Initiative to maximize the use of devices based on the flexible nanoelectronic thread (NET) he has developed. The information they gather could be critical to future treatment of neurological disease.

The biocompatible probes have the unique ability to stably record electrical information from individual neurons. They will be designed to record neuronal activity in different parts of the brain to help researchers understand complex, three-dimensional patterns that occur on a millisecond time scale but evolve over days, months and years.

Xie said current probes are often rigid electrodes that lack the necessary lifetimes to collect dynamic information over the long term and are ill-suited to use with imaging techniques. Micron-thick NET probes, each with 128 contacts, can be implanted in various regions of the brain by attaching them to more rigid tungsten wires of the same size with a water-soluble adhesive. When the glue melts, the wires are withdrawn, leaving the probes in place.

“In order to do this at a large scale so we can analyze neural dynamics, we do need to get closer to the scale, to a certain extent, of the nervous system, which we know is huge,” said Xie, an associate professor of electrical and computer engineering and of bioengineering who joined Rice this year.

“This project is designed to extend the current spatiotemporal scales we have in neuroscience studies by making smaller and more flexible electrodes and with longer-lasting recording capabilities,” he said. “We’ve also engaged a neuroscientist in this project — co-principal investigator Loren Frank of the University of California, San Francisco — so we have direct knowledge of what these scientists need.”

The probes enabled a study published earlier this year by his collaborator, Lan Luan, who used the technology to discover that blood flow recovers faster than the brain in microscopic strokes. In that study, NET probes were combined with optical lines that measured blood flow by laser speckle patterns for as long as eight weeks.

“Our electrodes in that study were really limited to just a few dozen,” said Luan, an assistant professor of electrical and computer engineering and co-investigator on the project. “But with the new technology development, we’re hoping to be able to test these bi-model types of measurements with larger-scale recordings in different regions of the brain.”

The researchers plan to optimize NET probes to gather high-density information in animal models for various brain regions and species.

The current technology is just a start, according to Xie. “We have parallel efforts to design electrodes that may eventually be used in humans,” he said.

Alex Huk of the University of Texas at Austin and Mattias Karlsson at SpikeGadgets Inc. are also co-investigators on the project. The grant is being administered by the National Institute of Neurological Disorders and Stroke.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and No. 1 for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
Jeff Falk
713-348-6775

Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the project details at:

ow recovers faster than brain in micro strokes:

Xie lab of the Nanoscale Neural Interface:

Luan Lab:

Neuroengineering Initiative:

George R. Brown School of Engineering:

Related News Press

News and information

Arrowhead ARO-AAT Phase 2 Interim Results in Patients with Alpha-1 Liver Disease Demonstrate Improvements in Key Parameters after Six Months of Treatment September 16th, 2020

Fast calculation dials in better batteries: Analytical model from Rice University helps researchers fine-tune battery performance September 16th, 2020

Why NASA Wants to Buy More Moon Rocks:  A Small Announcement May Have Large Consequences for Space Development September 15th, 2020

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

Brain-Computer Interfaces

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

Mind over body: The search for stronger brain-computer interfaces April 20th, 2020

The Human Brain/Cloud Interface Research Paper has been Published! February 22nd, 2020

Govt.-Legislation/Regulation/Funding/Policy

Fast calculation dials in better batteries: Analytical model from Rice University helps researchers fine-tune battery performance September 16th, 2020

Why NASA Wants to Buy More Moon Rocks:  A Small Announcement May Have Large Consequences for Space Development September 15th, 2020

Quirky response to magnetism presents quantum physics mystery: Magnetic topological insulators could be just right for making qubits, but this one doesn’t obey the rules September 11th, 2020

Quantitatively understanding of angle-resolved polarized Raman scattering from black phosphorus September 11th, 2020

Possible Futures

Arrowhead ARO-AAT Phase 2 Interim Results in Patients with Alpha-1 Liver Disease Demonstrate Improvements in Key Parameters after Six Months of Treatment September 16th, 2020

Fast calculation dials in better batteries: Analytical model from Rice University helps researchers fine-tune battery performance September 16th, 2020

Why NASA Wants to Buy More Moon Rocks:  A Small Announcement May Have Large Consequences for Space Development September 15th, 2020

Understanding electron transport in graphene nanoribbons: New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalized medicine September 11th, 2020

Nanomedicine

Arrowhead ARO-AAT Phase 2 Interim Results in Patients with Alpha-1 Liver Disease Demonstrate Improvements in Key Parameters after Six Months of Treatment September 16th, 2020

Understanding electron transport in graphene nanoribbons: New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalized medicine September 11th, 2020

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

Arrowhead Pharmaceuticals to Participate in Upcoming September 2020 Conferences September 10th, 2020

Discoveries

Fast calculation dials in better batteries: Analytical model from Rice University helps researchers fine-tune battery performance September 16th, 2020

Quirky response to magnetism presents quantum physics mystery: Magnetic topological insulators could be just right for making qubits, but this one doesn’t obey the rules September 11th, 2020

Get diamonds, take temperature: Quantum thermometer using nanodiamonds senses a ‘fever’ in tiny worms C. elegans September 11th, 2020

Quantitatively understanding of angle-resolved polarized Raman scattering from black phosphorus September 11th, 2020

Announcements

Arrowhead ARO-AAT Phase 2 Interim Results in Patients with Alpha-1 Liver Disease Demonstrate Improvements in Key Parameters after Six Months of Treatment September 16th, 2020

Fast calculation dials in better batteries: Analytical model from Rice University helps researchers fine-tune battery performance September 16th, 2020

Why NASA Wants to Buy More Moon Rocks:  A Small Announcement May Have Large Consequences for Space Development September 15th, 2020

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Boundaries no barrier for thermoelectricity: Rice researchers find potentially useful electrical phenomenon in gold nanowires September 8th, 2020

An improved wearable, stretchable gas sensor using nanocomposites August 28th, 2020

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

A powder method for the high-efficacy measurement of electro-optic coefficients August 21st, 2020

Nanobiotechnology

Arrowhead ARO-AAT Phase 2 Interim Results in Patients with Alpha-1 Liver Disease Demonstrate Improvements in Key Parameters after Six Months of Treatment September 16th, 2020

Understanding electron transport in graphene nanoribbons: New understanding of the electrical properties of graphene nanoribbons (GRBs), when bounded with aromatic molecules, could have significant benefits in the development of chemosensors and personalized medicine September 11th, 2020

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells: Possible applications in x-ray imaging, cancer treatment September 11th, 2020

Arrowhead Pharmaceuticals to Participate in Upcoming September 2020 Conferences September 10th, 2020

Research partnerships

Boundaries no barrier for thermoelectricity: Rice researchers find potentially useful electrical phenomenon in gold nanowires September 8th, 2020

CEA-Leti X-Ray Photon-Counting Detector Modules Target Improved Medical Diagnoses: Clinical Trials Show Higher Spatial Resolution, Less Noise, Fewer Artifacts, And Color Capabilities in Patients’ Images September 3rd, 2020

Oxford Instruments partners with the £10 million consortium, to launch the first commercial quantum computer in UK September 2nd, 2020

FEFU scientists are paving way for future tiny electronics and gadgets August 28th, 2020

Source: http://www.nanotech-now.com/news.cgi?story_id=56341

spot_img

Latest Intelligence

spot_img

Chat with us

Hi there! How can I help you?